martes, 30 de junio de 2015

La partícula al final del universo

la particula al final del universo-sean b. carroll-9788499922997

Escrito por Sean Carroll y publicado por Random House Mondadori, dentro de la colección Debate, en 2013.

El autor es un físico teórico del Caltech, doctorado en Harvard, que ha escrito algunos libros y publicado una serie de clases en dvd sobre el universo que tienen buen aspecto pero que reconozco no he podido ver.

Tal y como el subtitulo del libro indica ("Del bosón de Higgs al umbral de un nuevo mundo") el argumento principal del libro es la búsqueda de esa partícula misteriosa que puede haber sido descubierta ya (aunque aún faltan más comprobaciones para saber si es exactamente la que se estaba buscando o es alguna otra sorpresa). Pero no sólo nos habla de la partícula en sí, sino que hace un gran recorrido por las entrañas del LHC en  el CERN y las dificultades para su construcción (aunque obviamente menos dificultades que las que tuvieron en USA, donde cancelaron la construcción del SSC) y sobre todo por dos de los experimentos, el ATLAS y el CMS, dedicados ambos a la detección de partículas, pero cada uno de un modo distinto, dando así mayor veracidad a la detección de las posibles nuevas partículas (si es que lo detectan los dos experimentos, como ha sido el caso en el 2012). Durante ese recorrido, al margen de hablarnos de los responsables implicados en todos los aspectos del LHC, también hace un amplio recorrido por la física que está detrás. Entra de lleno en lo que son las partículas, o al menos lo que creemos que son actualmente (teoría de cuerdas incluida), en la teoría cuántica de campos, la ruptura de las simetrías (y por qué son importantes en física), en fin en muchos temas muy interesantes y bien explicados (dentro de la extrema complejidad técnica de los mismos, que logra evitar en casi todo momento). Comenta también conceptos muy de moda, como la materia y la energía oscuras y las posibilidades que tenemos de lograr alguna prueba concreta de ellas en el LHC. Por supuesto, narra cómo se llegó teóricamente a la necesidad del bosón de Higgs (y de quienes tendrían que llevarse el premio Nobel en caso de terminar comprobándose la teoría, ya que, como suele ser habitual desde hace tiempo en física, las ideas no son de una sola persona).

Las explicaciones que va dando a lo largo del libro de todos los temas que trata son bastante buenas, pero deja un par de ellas para los tres apéndices finales que merece la pena leer, ya que aclaran bastante sobre lo que es la masa y el espín de las partículas, hace un resumen del modelo estándar de partículas e introduce un poco los diagramas de Feynman.

Por resumir, son 317 páginas, más los tres apéndices, que, aunque se leen cómodamente (no hay fórmulas), tienen una densidad de información, sobre todo para los que no hayan  leído nada sobre estos temas antes, que hace que haya que leerlas en un ambiente tranquilo y relajado, pero que merece la pena.

Como siempre, copio un trocito:
"La teoría cuántica de campos es la responsable del fenómeno de las partículas virtuales, incluidos los partones (quarks y gluones) en el interior de los protones que tan importantes son para lo que sucede en las colisiones del LHC. Igual que nunca podemos determinar la posición precisa de una partícula, tampoco podemos establecer con precisión la configuración de un campo. Si lo observamos con suficiente detenimiento, vemos partículas que aparecen y desaparecen en el espacio vacío, dependiendo de las condiciones locales. Las partículas virtuales son una consecuencia directa de la indeterminación inherente a la mediciones cuánticas.
Durante generaciones, los estudiantes de física han tenido que enfrentarse a una temida pregunta: "¿La materia en realidad está hecha de partículas o de ondas?". Es habitual que ni siquiera tras todos sus años de formación lleguen a tener una buena respuesta. Hela aquí: la materia en realidad son ondas (campos cuánticos), pero cuando observamos con el suficiente detalle vemos partículas. Si nuestros ojos fuesen tan sensibles como los de las ranas, todo esto tendría más sentido para nosotros."

Clasificación:
Facilidad de lectura: 2-3 (tiene algunas partes complicadas)
Opinión: 4

lunes, 22 de junio de 2015

La teoría que nunca murió



Escrito por Sharon Bertsch McGrayne y publicado en 2012 por Editorial Crítica, dentro de la serie Drakontos (de la cual tengo bastantes libros). El original es del 2011, así que esta vez no han pasado muchos años entre el original y la traducción al español.

Sobre la autora, no puedo comentar mucho, el que quiera más información que le eche un vistazo a la web que he marcado antes, que yo no sabía nada de ella, así que tengo que reconocer que el libro me lo compré por el subtítulo del mismo: "De cómo la regla de Bayes permitió descifrar el código Enigma, perseguir submarinos rusos y emerger triunfante de dos siglos de controversia". La verdad es que, a los que hemos estudiado la regla de Bayes, esto nos llama la atención. No hay que olvidar que en los estudios se ven pocos ejemplos prácticos de verdad (quizás hoy en día, con los ordenadores actuales se vean más, pero en mi época de estudiante universitario, los ordenadores de la facultad había que pedirlos con hora y programarlos en Fortran, ejem). Durante los cursos de doctorado en Inteligencia Artificial fue cuando comprendí la importancia del Teorema de Bayes ya que ahí se usaba prácticamente en todas partes (casi aunque no quisieses).

No quiero hacer una disertación sobre el teorema en sí, pero para los que no sepan qué es lo que dice, hay un vídeo en Youtube que lo explica bastante bien (éste) y otra web en la que dan algunos ejemplos más (ésta). Por resumir un poco para aquellos que no quieran ver nada de lo anterior, decir que el Teorema de Bayes se usa para entre otras cosas para, sabiendo que un suceso tiene una probabilidad a priori, calcular una probabilidad revisada del mismo o a posteriori. Y éste es el argumento central del libro y el que une los distintos capítulos (por otra parte independientes entre sí), la lucha entre los estadísticos frecuentistas y los partidarios de la regla de Bayes (por otra parte desarrollada posteriormente por Laplace entre otros), y toda esa lucha se centra en las probabilidades a priori, aceptadas por unos y rechazadas por otros.

Mientras nos cuenta la lucha entre los dos bandos, el libro nos sumerge en multitud de eventos en los que incluso los que rechazaban la regla de Bayes se vieron obligados a trabajar con ella para intentar obtener soluciones a problemas realmente serios. Entre otros, en el libro dedican parte de un capítulo  (dentro del capítulo: "Las pesquisas de la armada") a la localización de la bomba de hidrógeno perdida en Palomares, a la localización de submarinos perdidos, pero también a sus aplicaciones en la medicina, la criptografía, la toma de decisiones en tiempo real, los buscadores de internet, la traducción simultánea, en fin, lo que comentaba en un principio, que al final, cuando se miran las cosas con detalle resulta que una regla tan sencilla como el Teorema de Bayes (y los árboles de decisión) están en prácticamente todas partes en nuestra vida cotidiana. Por supuesto las cosas pueden complicarse todo lo que queramos (como bien nos comentan en el libro, con el método Montecarlo, las cadenas de Markov y todas las variantes y mezclas de los mismos).

Creo que merece la pena leerlo porque está increíblemente bien documentado, bastante bien escrito (bueno, con una excepción, que a mi lo de usar "teorético" en vez de "teórico" no termina de gustarme, pero es una cuestión personal) y describe hecho ocurridos hace realmente poco tiempo y que la gente que estudiábamos esas cosas no nos dimos cuenta de que estaban pasado (bueno, al menos yo), de hecho no sabía que se empezaron a celebrar conferencias bayesianas en Valencia (1979) para reunir a los pocos bayesianos que había en el mundo. Son 471 páginas, más un par de anexos, que no tienen dificultad técnica y que se pueden leer bastante bien.

Como siempre, copio un trocito:
"Para apoderarse de un libro de códigos, el capitán de corbeta Ian Fleming - que andando el tiempo habría de ser el creador de James Bond pero que en esos años servía como ayudante del jefe de la Dirección de la Inteligencia Naval británica - elaboraría la llamada "Operación Inflexible". El plan concebido era digno del espía que él mismo habría de lanzar a la fama durante la posguerra. La idea de los británicos consistía en dotar a un avión alemán capturado en combate de una tripulación en la que figurara una persona que hablase perfectamente la lengua alemana (y esa persona habría de ser el propio Fleming, que había estudiado dicho idioma en Austria durante su juventud). Después, la aeronave fingiría estrellarse en las aguas del Canal de la Mancha a fin de ser rescatada por un buque nazi. Una vez a bordo, los falsos germanos tomarían el control del barco, poniendo rumbo a Inglaterra con todo el equipo asociado con las máquinas Enigma y llevándoselo directamente a Turing. La aventura sería minuciosamente planeada, pero terminaría cancelándose, de modo que Turing y Twinn se presentaron ante Birch con el aspecto "de dos empresarios de pompas fúnebres a quienes se les hubiese hurtado el disfrute de un magnífico cadáver [...] y sudando a la gota gorda a causa de la angustia".

Clasificación:
Facilidad de lectura: 1
Opinión: 3-4 (está bastante entretenido aunque son muchas páginas, pero es que hay mucha historia que contar)

martes, 9 de junio de 2015

Orígenes

orígenes-neil degrasse tyson-donald goldsmith-9788449330728

Escrito por Neil deGrasse Tyson y Donald Goldsmith y publicado por Paidós Contextos en el 2014 (aunque la edición en inglés es del 2004).

Tengo que reconocer que lo que me animó a comprar el libro (supongo que como a los editores españoles a editarlo diez años después de su publicación original) fue ver el primer capítulo de la nueva serie Cosmos (sólo he visto el primero, de la original sí que puedo hablar más) y ver que la vida de este nuevo presentador de la serie se había entremezclado con la de Carl Sagan, que a fin de cuentas fue el que me animó a mi a estudiar ciencias (sin entrar en detalles de si fue o no fue un gran físico, sí que puedo decir que fue uno de los mayores divulgadores científicos del siglo XX, sin miedo a meter la pata y pudiendo decir que la serie original Cosmos sigue siendo prácticamente válida en la mayoría de los conceptos que trata). De Carl Sagan ya he comentado algún libro aquí.

De Donald Goldsmith, reconozco que no sabía nada, pero se puede comprobar que es otra persona que sabe del tema del que trata el libro, que no es otro que el de los orígenes del Universo y la posibilidad de vida en otros planetas (sin importar si esos planetas están cerca del nuestro o no).

El libro se divide en cinco partes: el origen del Universo, el origen de las galaxias y la estructura cósmica, el origen de las estrellas, el origen de los planetas y el origen de la vida (todas con la palabra origen al principio por lo que no hay que dar muchas vueltas a la cabeza para entender por qué decidieron titular al libro como decidieron titularlo).

No es un libro que profundice mucho en ningún tema en particular, pero da un detalle bastante bueno de lo que se sabía en el 2004 (aunque también es cierto que no es que se tengan muchas más certezas a día de hoy) sobre el origen y evolución del Universo. No trata tanto el tema del Universo como concepto (aunque en algún capítulo si comenta las diferentes teorías que hay sobre si es uno sólo o son muchos) sino del Universo como recipiente en el que están los planetas, las estrellas, las galaxias, los cúmulos, ... y da una descripción bastante buena de qué es cada cosa, de cómo se fueron descubriendo y de lo que creemos que fue el origen de cada una (al margen de la descripción, hay una serie de fotografías bastante buena en dos secciones del libro). En ciertos momentos me recuerda a otro libro que algún día me acordaré de comentar aquí, que es el de "Historia de un átomo" de Laurence M. Krauss (del que he comentado dos libros ya : uno y dos).

No nos va a hacer un resumen de toda la física conocida como hacen algunos otros libros, sino que se dedica en exclusiva a la que importa para comprender lo fundamental a nivel aficionado (no astrofísico profesional) sobre nuestro Universo y los objetos que lo componen (de hecho hay una de las mejores explicaciones sobre las supernovas tipo Ia y la luminosidad aparente que he leído).

En definitiva, un libro que se lee bastante bien, son sólo 258 páginas, con otras 15 de fotografías (bastante buenas y bien explicadas) y un glosario de términos al final que viene bien si alguien se pierde en algún concepto explicado con anterioridad, porque hay que reconocer que explican todo de lo que hablan, no dan nada por sabido.

Como siempre, copio un trocito:
"Esto pareció una suposición bastante razonable hasta que los seres humanos trajeron piedras lunares a la Tierra para su análisis minucioso. Hace más de tres décadas, la composición química de las muestras rocosas traídas por las misiones Apolo impuso dos conclusiones, una a cada lado de las posibilidades respecto al origen de la Luna. Por una parte, la composición de las piedras lunares se parece tanto a la de las de la Tierra, que la hipótesis de que nuestro satélite se formó totalmente aparte de nosotros ya no parece sostenible. Por otra, la composición de la Luna difiere de la de la Tierra lo bastante para demostrar que la Luna no se formó exclusivamente a partir de material terrestre. Entonces, si la Luna no se formó aparte de la Tierra ni a partir de la Tierra, ¿cómo se formó?".

Clasificación
Facilidad de lectura: 2 (hay algún punto que al menos a mi no me parece explicado de forma muy clara).
Opinión: 3-4 (hay otros libros que leería antes que este, que está bien, pero me esperaba más, quizás por el tema Carl Sagan y mi subconsciente).

sábado, 23 de mayo de 2015

17 ecuaciones que cambiaron el mundo

17 ecuaciones que cambiaron el mundo-ian stewart-9788498925173

Escrito por Ian Stewart y publicado por Editorial Crítica en 2013.

El escritor es un catedrático de matemáticas en la Universidad de Warwick y un gran divulgador científico. Yo mismo tengo un par de libros suyos en casa pendientes de leerme, entre otros: De aquí al infinito y El laberinto mágico.

El libro, como muy bien indica el título, dedica cada uno de sus 17 capítulos a una ecuación que ha supuesto un cambio en la vida de las personas (aunque en muchas ocasiones ni siquiera nos demos cuenta). Como resumen, lo mejor que puedo hacer es, primero, enumerar los temas (ecuaciones) de los que habla: teorema de Pitágoras, logaritmos, derivadas, Ley de gravitación universal, i (en este capítulo vuelve a aparecer la ecuación de Euler (famosa), que es la ecuación más bonita de todas las matemáticas, al menos en mi opinión, como ya dije al comentar otro libro), Fórmula de Euler para poliedros, distribución normal, ecuación de onda, transformada de Fourier, ecuación Navier-Stokes, ecuaciones de Maxwell, segunda ley de la termodinámica, relatividad, ecuación de Schrödinger, teoría de la información, teoría del caos y ecuación de Black-Scholes.

En la primera hoja de cada capítulo escribe la ecuación de la que va a tratar, indica lo que significa cada símbolo en ella y además comenta los usos principales que hacemos hoy en día de esa ecuación. La verdad es que el desarrollo de los capítulos está muy bien trazado y obliga a pensar en muchos temas distintos. Por ejemplo, a mi nunca se me había ocurrido trazar una historia desde el teorema de Pitágoras hasta la geometría diferencial actual (y las diferentes métricas asociadas). Alguno de los capítulos tengo que reconocer que tienen cierta dificultad conceptual, pero es que es normal que tratando las ecuaciones que trata el asunto se complique en algunos momentos (en la facultad estuve cuatro meses estudiando la resolución de la ecuación de Schrödinger en espacios de Sobolev y aquí la explican en un capitulo de 21 páginas). No puedo resistirme a ponerla (de hecho la llevo escrita en mis aletas de buceo):
Resultado de imagen de ecuacion de schrodinger
Bien, esa es la famosa ecuación de Schrödinger (fundamental en la mecánica cuántica) y en el capítulo 14 la explica bastante bien.

A pesar de eso, la verdad es que merece la pena echarle un vistazo, son 394 páginas (más unas notas finales) que pueden hacerse un poco densas si las leemos todas seguidas, pero como cada capítulo es independiente, se puede leer de semana en semana resultando una lectura bastante agradable (de esas que reactivan el cerebro un poco). Se habla de prácticamente todos los temas físicos (gravedad, relatividad, mecánica cuántica, caos, ...) y matemáticos (álgebra, cálculo, geometría, ...). Dedica un capítulo entero a la teoría de la información de Shannon, que viene muy bien para entender los conceptos de entropía y de información (tan de moda ahora con las nuevas teorías sobre la pérdida o no de información en los agujeros negros). Incluso en el último capítulo, habla de los derivados financieros y el posible origen de la última crisis económica.

Como siempre, copio un trocito:
"Algunas ecuaciones son universalmente válidas. Algunas describen el mundo muy exactamente, pero no perfectamente. Algunas son menos precisas, confinadas a reinos más limitados, aunque ofrecen un entendimiento vital. Algunas son básicamente erróneas sin más, aunque pueden actuar como peldaños hacia algo mejor. Todavía podrían tener un efecto enorme.
Algunas incluso desvelan cuestiones difíciles, de naturaleza filosófica, sobre el mundo en que vivimos y nuestro lugar en él. El problema de las mediciones cuánticas, escenificadas por el desafortunado gato de Schrödinger, es una de ellas. La segunda ley de la termodinámica presenta temas profundos sobre el desorden y la flecha del tiempo. En ambos casos, algunas de las paradojas aparentes pueden ser resueltas, en parte, pensando menos en el contenido de la ecuación y más en el contexto en el que se aplica. No en los símbolos, sino en las condiciones de contorno. La flecha del tiempo no es un problema sobre la entropía; es un problema sobre el contexto en el cual pensamos en la entropía."

Clasificación:
Facilidad de lectura: 2-3 (las ecuaciones no suelen facilitar la lectura)
Opinión: 4 (merece la pena leerlo).

sábado, 21 de febrero de 2015

El telescopio de Einstein

el telescopio de einstein-evalyn gates-9788484286493

Escrito por Evalyn Gates y publicado por Alba Editorial en 2011 (aunque el original es del 2009).

El libro tiene una continuación del título que describe perfectamente de lo que va a tratar: "en busca de la materia y energía oscuras del universo".

Está escrito por Evalyn Gates (que reconozco que no había oído hablar de ella hasta que me interesé por este libro) que es una doctora en física de partículas que, entre otras cosas, ha sido directora de astronomía del Planetario Adler de Chicago (vamos, que de estos temas sabe algo).

En principio, lo de "el telescopio de Einstein" no lo tenía muy claro, no sabía si era algo basado en un principio físico o una forma de hablar, pero definitivamente, como muy bien explica en el libro, hace referencia a la curvatura de la luz en presencia de objetos masivos, de tal forma que ese efecto se puede usar como un telescopio que nos permite ver galaxias lejanas que de otra forma serían demasiado débiles como para poder verlas sin el efecto de distorsión espacio-temporal que produce la presencia de objetos masivos en el camino que recorre la luz desde la galaxia que la emitió hasta el planeta en el que vivimos. Explica el fenómeno con total claridad y muestra, en una serie de fotos a color en el centro del libro, los distintos efectos que pueden aparecer al ocurrir estos fenómenos de curvatura de la luz (tengo que decir que las fotos son muy curiosas y merece la pena echarles un vistazo con tranquilidad).

Basándose en este fenómeno, y en nuestro conocimiento del mismo, las cosas empiezan a complicarse (como suele ocurrir en esta materia) y de un sitio vamos a otro y como por obligación surgen tanto la energía oscura como la materia oscura. De una forma natural, que parece que no se entiende por qué no se le había ocurrido a alguien antes, pero de repente nos encontramos tratando de localizar y entender cosas que no sabemos lo que son, ni dónde están y nos obligan a desarrollar tanto la física teórica (para intentar generar modelos que expliquen lo que observamos) como la técnica experimental, para intentar detectar lo indetectable. Es la misma óptica gravitatoria utilizada para observar galaxias lejanas, la que se está usando actualmente para detectar planetas extrasolares con éxito indiscutible.

En el capítulo dedicado a la expansión cósmica pone la ecuación de Einstein de la relatividad general y hace una explicación bastante sencilla de la misma.

Resultado de imagen de ecuaciçon de Einstein relatividad general
Sí, ya se que no parece sencilla (ni lo es), pero sigue siendo sorprendente (por mucho que la notación sea tensorial, con todo lo que eso implica), que una teoría tan compleja (en todos los niveles), se pueda resumir en una sóla ecuación (aunque sea una forma compactada de muchas).

También, entre otras cosas, da una muy buena explicación sobre la teoría inflacionaria de Alan Guth y cómo esa teoría resolvía de golpe varios de los problemas más serios de la astrofísica, como son el de los monopolos magnéticos, el de la planitud del universo y el famoso problema del horizonte (tres en uno, no se si al final será correcta la teoría, pero hay que reconocer el mérito de la misma). Se mencionan y explican también las ondas gravitatorias (sí, esas que no terminamos de saber si se han detectado o no) y multitud de conceptos que explican o intentan explicar el sitio en el que vivimos.

En fin, que son 357 páginas que hay que leer con tranquilidad, no por la dificultad de la lectura, si no porque explican muchas cosas y aportan muchos datos (sobre todo para los que, como yo, no sepan mucho de óptica gravitatoria), pero que merece la pena ser leído.

Como siempre, copio un trocito:
"Hemos aprendido cosas asombrosas. El universo tiene 13.700 millones de años, una temperatura media sólo tres grados sobre el cero absoluto, y es plano. La inmensidad del espacio que hoy vemos lleno de cientos de miles de millones de galaxias era un caldo de energía de densidad casi infinita que empezó a expandirse y enfriarse desde su mismo comienzo. El propio espacio se expande en un gran estiramiento cósmico que recientemente ha dado otra vuelta de tuerca: la expansión se acelera. Por lo demás, el universo es oscuro. La energía oscura (72 por ciento) y la materia oscura (23 por ciento) dominan el inventario del cosmos; la materia normal, que comprende todo lo que hemos podido sostener con nuestras manos o examinar con nuestros instrumentos, no es más que el tercer elemento en importancia y sólo representa el cinco por ciento de cuanto existe."

Clasificación:
Facilidad de lectura: 2 (hay que estar atento).
Opinión: 4

PD (añadida el 12/03/15): Sobre este asunto acaba de salir una noticia

viernes, 26 de diciembre de 2014

¿Es Dios un matemático?

¿es dios un matematico?-mario livio-9788434469518

Escrito por Mario Livio y publicado por Editorial Ariel en 2009.

Dije hace poco, al comentar el libro "La ecuación jamás resuelta" que haría un resumencillo de este otro (porque se me había pasado hacerlo, despistado que es uno).

Ya comenté que al autor es doctor en astrofísica teórica y ha sido director del STScI (encargados del programa científico del telescopio Hubble).

El libro es una exploración de las ideas matemáticas desde la antigua Grecia hasta nuestros días en busca de la respuesta a una pregunta que no es exactamente la del título sino la de por qué las matemáticas parecen explicar todo lo que explican, o como decía Einstein: "¿cómo es posible que la matemática, un producto del pensamiento humano independiente de la experiencia, se ajuste de modo tan perfecto a los objetos de la realidad física?"

Para responder a eso habla de los grandes pensadores y matemáticos de la antiguedad, Platón, Pitágoras, Arquímides, pero nos mezcla todo con grandes filósofos más actuales y con los grandes científicos de los últimos siglos, no sólo matemáticos (de los cuales suelo hablar mucho y no volveré a reproducir sus nombres para no aburrir, pero digamos al menos uno que no suelo mencionar mucho que es el de Bertran Rusell, que junto con Whitehead escribió uno de los grandes tratados de la lógica matemática: Principia Mathematica).

Le verdad es que es un libro que te hace pensar un poco y comprender algo mejor la historia de las matemáticas y de los que formaron parte de ella. El último capitulo, titulado "¿Eficacia inexplicable?", merece una atención especial, porque en él no sólo habla de las últimas tendencias físicas (teoría de cuerdas, qed, ...) sino también del origen de algunas teorías matemáticas no tan conocidas, como la teoría de nudos, y termina explicando ideas al respecto del enigma de Wigner de científicos actuales (David Gross, Richard Hamming, Steven Weinberg, ...). El enigma de Wigner lo podemos resumir por "el milagro de la articulación entre el lenguaje, la matemática y la formulación de las leyes físicas".

El libro son solo 246 páginas mas unas notas finales y se lee bastante bien (creo recordar que no hay ninguna fórmula en todo el libro, excepto algunas con operaciones aritméticas básicas (nada de integrales, ni derivadas, ni operadores raros, aunque hace una explicación muy buena de lo que es una integral en la página 57)). Sinceramente, creo que merece la pena leerlo y no requiere ningún esfuerzo mental (aunque algunas sorpresas sí que se lleva el lector, que hay muchas anécdotas interesantes descritas en él).

Como siempre, copio un trozo:
"Tomemos, por ejemplo, los números primos (aquellos que sólo son divisibles por sí mismos y por la unidad) que, por lo que a mí respecta, constituyen una realidad más estable que la realidad material que nos rodea. El matemático de profesión se puede comparar con un explorador que se pone en marcha para descubrir el mundo. A partir de la experiencia se pueden descubrir hechos básicos. Por ejemplo, basta con unos sencillos cálculos para darse cuenta de que la serie de números primos parece no tener fin. E1 trabajo del matemático es entonces demostrar que, efectivamente, hay una infinidad de números primos. Este es un resultado antiguo, como sabemos, y se lo debemos a Euclides. Una de las consecuencias más interesantes de esta demostración es que, si alguien afirma un día que ha descubierto el mayor número primo que existe, será fácil demostrar que se equivoca. Esto mismo es válido para cualquier demostración. Nos enfrentamos pues a una realidad estrictamente igual de incontestable que la realidad física."

Clasificación:
Facilidad de lectura: 1.
Opinión: 4-5.

domingo, 14 de diciembre de 2014

El carácter de la ley física













Escrito por Richard P. Feynman y editado por Tusquets Editores en 2000 y 2005 (aunque el original es de mucho, mucho tiempo antes).
 
Sobre el autor decir, nuevamente, que es uno de los más grandes físicos de todos los tiempos (premio Nobel incluido). Por resumir, diré que estudió física en el MIT y se doctoró en Princeton. Y para el que eso le parezca poco, trabajó en Los Alamos (sobre el trabajo que se llevó acabo allí, comenté un libro en este blog, "Aventuras de un matemático") y desarrolló, como no podía ser de otro modo, dado el nombre, los "diagramas de Feynman", de los cuales llevo un par de ellos en mis aletas de buceo (soy así).
 
Aunque sólo he comentado un libro suyo antes (¿Qué significa todo eso?), también hay otro libro del que es protagonista, aunque no autor, que es el de "El arcoíris de Feynman", y un video corto que pues hace tiempo (este), que está en la web oficial a la que he puesto el link anterior con su nombre.
 
Centrándonos en este libro, comentar que es un resumen y a la vez una introducción a las principales leyes físicas. Voy a enunciar los capítulos, porque creo que con eso queda bastante claro de qué va: 1.-La ley de la gravedad, un ejemplo de ley física, 2.-La relación de las matemáticas con la física, 3.- Los grandes principios de conservación, 4.-Simetría y ley física, 5.-La distinción entre pasado y futuro, 6.-Probabilidad e incertidumbre: la visión de la naturaleza a través de la mecánica cuántica, 7.-En busca de nuevas leyes.
 
Cada capítulo tiene, más o menos veinticinco páginas, por lo que se puede leer un capítulo cada vez y en seis sentadas está leído. Creo que en todo el libro no hay más de diez fórmulas (todas muy simples) y muchas explicaciones muy buenas. Durante el desarrollo del libro salen a relucir casi todos los nombres de los grandes físicos que han surgido a lo largo de la historia. Sobre las simetrías y los principios de conservación ya he hablado antes (cada vez que lo hago menciono a Emmy Noether y me enrollo, así que esta vez no diré nada más) y el resto de capítulos creo que son suficientemente claros sobre el asunto del que tratan. Comentar no obstante que cuando habla de mecánica cuántica, no se centra en sus aportaciones, y hace una muy buena explicación del famoso experimento de los electrones con la rejilla y que establece la necesidad del uso de las matemáticas en la física (a pesar de lo que eso significa). Y, por supuesto, recomendar el último capitulo, que dedica, como él mismo dice, al arte de adivinar las leyes de la naturaleza (muy instructivo).
 
Resumiendo, son sólo 190 páginas, que se leen muy bien y que se pueden imaginar como siete conferencias separadas (que es lo que realmente son, las Messenger Lectures de Feynman en la Universidad de Cornell en 1964).
 
Como siempre, copio un trocito:
"Es una pena que para ello se necesiten las matemáticas y que éstas resulten difíciles para algunos. Se dice, aunque no sé si es cierto, que un rey que estaba intentando aprender geometría guiado por Euclides se quejó de que era difícil, a lo que Euclides contestó: "No hay camino fácil hacia la geometría". Y ciertamente no lo hay. Los físicos no pueden pasarse a otro lenguaje. Si se quiere conocer la naturaleza, si se quiere captarla, es necesario conocer le lenguaje en el que nos habla. La naturaleza nos ofrece su información sólo de una manera, y no debemos ser tan poco humildes como para pedirle que cambie antes de prestarle atención".
 
Clasificación:
Facilidad de lectura: 1
Opinión: 5