jueves, 15 de octubre de 2020

El universo elegante

 











Escrito por Brian Greene y publicado por Editorial Crítica dentro de su colección Drakontos en 2001 (el original es de 1.999).

Del autor esta vez sí que había oído hablar, de hecho he comentado un par de libros suyos con anterioridad: éste y éste. Es doctor en física y profesor de física y matemáticas en la Universidad de Columbia. Es uno de los grandes especialistas en teoría de cuerdas y un buen divulgador científico, así que dado el subtítulo del libro: "supercuerdas, dimensiones ocultas y la búsqueda de una teoría final", merecía la pena leerlo. Eso sí, hay que tener en cuenta la época en la que está escrito, hace ya 21 años (que viejos nos hacemos, jeje). Pero también está a punto de salir publicado un nuevo libro suyo (de hecho en cinco días): "Hasta el final del tiempo", que me compraré en cuanto lo vea por ahí.

El libro está muy centrado en la teoría de cuerdas y su evolución a la teoría de supercuerdas (mediante lo que se entiende como supersimetría (un principio de simetría que relaciona las propiedades de las partículas con un número entero como valor del espín (bosones) con las propiedades de las partículas cuyo espín es la mitad de un número entero impar (fermiones)), pero no por eso deja de comentarnos la teoría de la relatividad general de Einstein (porque a fin de cuentas, está hablando del universo) y la modelo estándar de partículas.

Comentando la teoría de la relatividad general, indica que el movimiento libre de fuerzas sólo tiene sentido en comparación con otros objetos y, como ha dicho a menudo el físico John Wheeler al describir la gravedad, "la masa agarra al espacio diciéndole cómo ha de curvarse, y el espacio agarra la masa diciéndole cómo ha de moverse" y nos introduce un poco en la geometría riemanniana que es la que explica la curvatura del espacio-tiempo. Y es esa misma geometría espacial lisa (que no quiere decir que sea plana), que constituye el principio fundamental de la relatividad general, la que queda destruida por las violentas fluctuaciones del mundo cuántico a escalas de distancias pequeñas (por el principio de incertidumbre). De ahí llegamos a que "el universo es como es porque las partículas de la materia y de las fuerzas tiene las propiedades que tienen. Ahora bien, ¿es esto una explicación científica de por qué tienen esas propiedades?".

Y cuando tenemos claro que hay un problema entre la relatividad general y la mecánica cuántica, nos introduce en el mundo de las teorías de cuerdas (recordemos que una cuerda es sencillamente una cuerda, puesto que no hay nada más fundamental, no se puede decir que esté compuesta por ninguna otra sustancia), que fueron evolucionando hasta ser realmente cinco teorías: teoría de cuerdas Tipo I, Tipo IIA, Tipo IIB, Heterótica-E y Heterótica-O, que convergen en un marco de referencia que se ha llamado Teoría M y que, a diferencia de las anteriores teorías, implica un espacio-tiempo de once dimensiones y un objeto conocido como cero-brana. 

Para irnos explicando todo esto, introduce un montón de conceptos, como la función beta de Euler, la teoría de Kaluza-Klein (por resumir mucho; posibilidad de existencia de nuevas dimensiones espaciales diminutas), las formas de Calabi.Yau, la teoría de perturbaciones, las simetrías espejo (que en el contexto de la teoría de cuerdas, es una simetría que muestra que dos formas de Calabi-Yau diferentes, que se denominan par de espejos, dan lugar a propiedades físicas idénticas cuando se eligen para las dimensiones enrolladas de la teoría de cuerdas), los espacios duales, los estados BPS (configuraciones dentro de una teoría supersimétrica cuyas propiedades se pueden determinar de manera exacta mediante argumentos basados en la simetría), etc ... gracias a Dios, si alguien no tiene buena memoria, al final hay un muy buen glosario de conceptos.

Resumiendo, un libro de 420 páginas, más unas notas finales, que se lee muy bien, casi todo, pero que hay un par de capítulos que hay que leer con calma (los capítulos donde nos habla de transiciones modificadoras de la topología (procesos que incluían rasgados del espacio)).


Como siempre, copio un trocito:

"Lo dicho por Uhlenbeck y Goudsmit, ¿significaba que el electrón gira en torno a si mismo? Sí y no. Lo que su trabajo demostraba realmente es que existe una noción de espín en la mecánica cuántica que en cierto modo se parece a la imagen habitual, pero que en su naturaleza es inherente a la mecánica cuántica. Se trata de una de esas propiedades del mundo microscópico que roza con las ideas clásicas, pero introduce una peculiaridad cuántica experimentalmente verificada. Por ejemplo, imaginemos una patinador que gira sobre si mismo. Cuando recoge sus brazos, gira más rápidamente, cuando los extiende, más despacio. Y antes o después, dependiendo de la fuerza con que se impulse para girar, lo hará más lentamente y acabará parando. No sucede así con el tipo de giro descubierto por Uhlenbeck y Goudsmit, Según su trabajo y subsiguientes estudios, todo electrón del universo, siempre y sin cesar, gira una velocidad fija y que nunca cambia. El espín de un electrón no es un estado de movimiento transitorio como lo es para otros objetos que nos resultan más familiares y que, por una razón u otra, están girando. Al contrario, el espín de un electrón es una propiedad intrínseca, como su masa o su carga eléctrica. Si un electrón no estuviera girando, no sería un electrón."

Clasificación:

Facilidad de lectura: 2-3 (hay un par de capítulos por la parte final que son para leer con calma).

Opinión: 3-4

No hay comentarios:

Publicar un comentario