Escrito por Richard P. Feynman y editado por Tusquets Editores en 2000 y 2005 (aunque el original es de mucho, mucho tiempo antes).
Sobre el autor decir, nuevamente, que es uno de los más grandes físicos de todos los tiempos (premio Nobel incluido). Por resumir, diré que estudió física en el MIT y se doctoró en Princeton. Y para el que eso le parezca poco, trabajó en Los Alamos (sobre el trabajo que se llevó acabo allí, comenté un libro en este blog, "Aventuras de un matemático") y desarrolló, como no podía ser de otro modo, dado el nombre, los "diagramas de Feynman", de los cuales llevo un par de ellos en mis aletas de buceo (soy así).
Aunque sólo he comentado un libro suyo antes (¿Qué significa todo eso?), también hay otro libro del que es protagonista, aunque no autor, que es el de "El arcoíris de Feynman", y un video corto que pues hace tiempo (este), que está en la web oficial a la que he puesto el link anterior con su nombre.
Centrándonos en este libro, comentar que es un resumen y a la vez una introducción a las principales leyes físicas. Voy a enunciar los capítulos, porque creo que con eso queda bastante claro de qué va: 1.-La ley de la gravedad, un ejemplo de ley física, 2.-La relación de las matemáticas con la física, 3.- Los grandes principios de conservación, 4.-Simetría y ley física, 5.-La distinción entre pasado y futuro, 6.-Probabilidad e incertidumbre: la visión de la naturaleza a través de la mecánica cuántica, 7.-En busca de nuevas leyes.
Cada capítulo tiene, más o menos veinticinco páginas, por lo que se puede leer un capítulo cada vez y en seis sentadas está leído. Creo que en todo el libro no hay más de diez fórmulas (todas muy simples) y muchas explicaciones muy buenas. Durante el desarrollo del libro salen a relucir casi todos los nombres de los grandes físicos que han surgido a lo largo de la historia. Sobre las simetrías y los principios de conservación ya he hablado antes (cada vez que lo hago menciono a Emmy Noether y me enrollo, así que esta vez no diré nada más) y el resto de capítulos creo que son suficientemente claros sobre el asunto del que tratan. Comentar no obstante que cuando habla de mecánica cuántica, no se centra en sus aportaciones, y hace una muy buena explicación del famoso experimento de los electrones con la rejilla y que establece la necesidad del uso de las matemáticas en la física (a pesar de lo que eso significa). Y, por supuesto, recomendar el último capitulo, que dedica, como él mismo dice, al arte de adivinar las leyes de la naturaleza (muy instructivo).
Resumiendo, son sólo 190 páginas, que se leen muy bien y que se pueden imaginar como siete conferencias separadas (que es lo que realmente son, las Messenger Lectures de Feynman en la Universidad de Cornell en 1964).
Como siempre, copio un trocito:
"Es una pena que para ello se necesiten las matemáticas y que éstas resulten difíciles para algunos. Se dice, aunque no sé si es cierto, que un rey que estaba intentando aprender geometría guiado por Euclides se quejó de que era difícil, a lo que Euclides contestó: "No hay camino fácil hacia la geometría". Y ciertamente no lo hay. Los físicos no pueden pasarse a otro lenguaje. Si se quiere conocer la naturaleza, si se quiere captarla, es necesario conocer le lenguaje en el que nos habla. La naturaleza nos ofrece su información sólo de una manera, y no debemos ser tan poco humildes como para pedirle que cambie antes de prestarle atención".
Clasificación:
Facilidad de lectura: 1
Opinión: 5
No hay comentarios:
Publicar un comentario