Escrito por Matt Parker y publicado por Editorial Crítica dentro de su colección Drakontos en 2020 (el original es del 2019).
Bueno, al autor no lo conocía, pero viendo el tema y que es es matemático, que se dedica a la divulgación y que el libro ha sido un best seller en Gran Bretaña, decidí que no pasaba nada por echarle un vistazo, y así lo he hecho.
Tal y como el título indica, el libro nos va a detallar unos cuantos errores matemáticos (cometidos no sólo por matemáticos, sino por ingenieros, arquitectos, informáticos, físicos, etc ..., usando las matemáticas), algunos conocidos y otros no tanto, pero siempre curiosos. En algunas partes me recuerda un poco a otro libro que comenté con anterioridad: éste.
La esencia del libro, y en mi opinión, lo que hay que tener siempre en cuenta es algo que se resume muy bien en un dicho conocido: "el que tiene boca se equivoca" y que el autor resume como: "mientras la teoría vaya por detrás de las aplicaciones prácticas, siempre habrá sorpresas matemáticas esperándonos. Lo importante es que aprendamos de estos errores inevitables y no los repitamos".
Habla de los errores que se comenten al usar hojas de cálculo (y dice una cosa que creo que siempre hay que tener en cuenta: "los cálculos son tan fiables como las fórmulas que hay bajo su superficie"), de los errores que cometemos contando (y pone el ejemplo del "problema del poste", que puede parecer una tontería, pero tonterías como ésta son muy habituales y peligrosas cuando se realizan cálculos), de lo cuidadosos que tenemos que ser al tratar con sucesos no independientes (y de los errores que se han cometido cuando no se han tenido en cuenta las independencias o no de distintos sucesos), del cuidado que hay que tener cuando calculamos probabilidades (textualmente: "la probabilidad es un área de las matemáticas en la que la intuición, además de fallarnos, por regla general se equivoca"), de los números aleatorios y pseudoaleatorios (y la definición de Kolmogorov: "una secuencia aleatoria es cualquier secuencia que es igual o más corta que cualquier descripción de ella"), ... En fin, de muchos errores, incluyendo errores de programación de distintos dispositivos, y de algunos conceptos curiosos, como la característica de Euler de una superficie, el "modelo de queso suizo" para analizar desastres, de James Reason (que me ha gustado mucho) y casi termina el libro comentando que "los matemáticos no son personas a quienes les resultan fáciles las matemáticas; son personas que disfrutan con su dificultad".
Resumiendo, un libro de 332 páginas (creo, que la verdad es que el autor ha puesto complicada la numeración de las mismas, jejeje) que se leen de forma muy fácil y muy amena, excepto la numeración de las mismas (se nota que practica el humor). Muy recomendable para pasar un buen rato.
Como siempre, copio un trocito:
"Una gran parte de las matemáticas tiene que ver con hallar una respuesta, pero, en estadística, los números que surgen de los cálculos nunca cuentan la historia completa. Todos los datos de los Doce del Datasaurio tienen los mismos valores de correlación, pero en los gráficos se ve claramente que las relaciones son diferentes. Los números que se obtienen gracias a la estadística son el inicio del proceso de descubrimiento de la respuesta, no el final. Hace falta un poco de sentido común y de análisis inteligente para llegar a la respuesta correcta a partir de las estadísticas.
Si no, cuando escuche una estadística como la que muestra que la tasa de casos de cáncer ha estado aumentando constantemente, le pueden hacer suponer que las personas tienen actualmente vidas menos saludables. Lo opuesto es cierto: la longevidad está aumentando, lo que significa que cada vez hay más personas que viven lo suficiente para contraer un cáncer. Para la mayoría de los cánceres, la edad es un factor de riesgo y, en el Reino Unido, el 60% de todos los casos de cáncer diagnosticados han sido en personas de 65 años o más. Lo que me hace afirmar, aunque me duela, que, en cuanto a las estadísticas, los números no lo son todo."
Clasificación:
Facilidad de lectura: 1 (y divertido).
Opinión: 4-5 (muy entretenido de leer aunque no entra en complicaciones técnicas).