Mostrando entradas con la etiqueta Dirac. Mostrar todas las entradas
Mostrando entradas con la etiqueta Dirac. Mostrar todas las entradas

jueves, 18 de agosto de 2022

Cómo hacer una tarta de manzana desde el principio

 

Escrito por Harry Cliff y publicado por editorial Debate en 2022 (el original es del 2021).

Vuelvo otra vez a lo que suele ser más habitual en mi, que es no conocer al autor del libro. Pero ocurre también que es un físico de partículas investigador en la Universidad de Cambridge y que trabaja en el LHCb, con lo que no le falta currículum para que haya que leer el libro.

Como él mismo indica en el principio, el título se basa en una frase que dijo Carl Sagan dentro de su serie Cosmos (que, como a mí, creo que le inspiró también a dedicarse a la ciencia): "Si queremos preparar una tarta de manzana desde el principio, antes debemos inventar el universo" (de ahí el subtitulo del libro: "la búsqueda de la receta de nuestro universo").

Como debemos suponernos, a lo que nos invita el libro es a conocer la historia del descubrimiento de las partículas atómicas que en última instancia es de lo que estamos hechos todos (incluyendo a las tartas de manzana).

Nos habla de la teoría atómica de Dalton (y su obra magna: "Un nuevo sistema de filosofía química") y de la ley de las proporciones múltiples, de cómo se llegó a descubrir el núcleo del átomo y luego a darse cuenta de que el número atómico era algo más que una etiqueta, que de hecho era el número de cargas positivas en el núcleo, de los grupos de simetría (hasta el SU(5)) y obviamente de Emmy Noether, de los laboratorios Gran Saso y del experimento Borexino (de los que ya hablé en otro comentario: éste), de la ecuación de Klein-Gordon, de la ecuación de Dirac (que es una de las pocas fórmulas que aparecen en el libro), de las condiciones de Sájarov, de lo que es un esfalerón (imprescindible en nuestra receta final), de lo que es un leptocuark, y de otras muchas cosas muy interesante. Todo narrado de forma muy amena y con muchas referencias y comentarios, tanto suyos, como de otros, como uno de James Chadwick cuando le preguntaron si Rutherford tenía una mente agua y dijo: "aguda no es la palabra apropiada, su mente era como la proa de un acorazado. Tenía detrás tal peso que no necesitaba ser afilada como una cuchilla". También hay referencias a series y libros menos técnicos, como la ya famosa "Guía del autoestopista galáctico" y la serie de televisión "Doctor Who".

Tiene una frase casi al final del libro que creo que merece la pena que la escriba aquí: "La ciencia es exploración, se haga en el laboratorio, en el mundo abstracto de la teoría matemática o estudiando las señales del propio universo. Y, a medida que exploremos, siempre nos toparemos con nuevos fenómenos y nuevos misterios que nos conducirán cada vez más lejos del punto de partida. ¿Continuará este viaje para siempre o llegará algún día a su final? Esta es, quizá, la mayor de todas las preguntas."

Contiene un par de errores de traducción (uno en la página 186 sobre la composición del protón y el neutrón), pero son muy obvios y no llevan a confusión (y si llevan, tampoco pasa nada, que no son temas que haya que memorizar), pero en general son 371 páginas que se leen de forma muy amena y con bastante humor, y con las cinco últimas dedicadas a darnos, lo que entendemos hoy, por una receta de manzana desde el principio (y una receta de manzana tradicional, jeje).  En mi opinión es un libro que merece la pena leer.

Como siempre, copio un trocito (bueno, esta vez dos):

"Ahora sabemos que cada partícula de materia tiene una antiversión, cuyas propiedades son exactamente las mismas pero con la carga opuesta. El electrón positivo de Dirac se conoce ahora como positrón o antielectrón. Por su parte el protón tiene una versión con carga negativa, el antiprotón, y hay también antineutrones, antimuones, anticuarks y antineutrinos. El hecho de que Dirac consiguiera predecir algo tan fantástico sólo a base de pensar muchísimo tiene que considerarse una de las hazañas más extraordinarias de la historia de la ciencia".

"De hecho, podría decirse que las partículas como tales no existen. Por lo que sabemos, los verdaderos componentes del universo son los campos cuánticos: sustancias invisibles parecidas a fluidos que no podemos ver ni saborear ni tocar y que, sin embargo, nos rodean y se extienden desde lo más profundo del átomo más pequeño de nuestro ser hasta los confines del cosmos. Los campos cuánticos -no los elementos químicos, ni los átomos, ni los electrones, ni los cuarks- son los verdaderos ingredientes de la materia. Somos cúmulos andantes, parlantes y pensantes de pequeñas perturbaciones que se autoperpetúan y se propagan en intangibles campos cuánticos".

Clasificación:

Facilidad de lectura: 1

Opinión: 4 (da un buen nivel de conocimientos sin volvernos locos con formulaciones complejas)

miércoles, 27 de mayo de 2020

Fórmulas elegantes




















Escrito por Graham Farmelo y publicado por Tusquets editores dentro de la colección Metatemas en 2004 (yo tengo una segunda edición del 2005 y el original es del 2002).

Del autor, decir que, nuevamente, no lo conocía, pero que es director de comunicación científica del Museo de Ciencias de Londres y profesor de física en la Northeastern University, y con eso, hay que darle un poco de crédito. Además, no es un libro escrito por él propiamente dicho, si no, elaborado y diseñado por él, pero compuesto de 11 capítulos, cada uno escrito por un autor distinto (uno por él) y un epílogo de Steven Weinberg (del que acabo de comentar un libro suyo: éste). Vamos, que había que echarle un ojo, sí o sí.

Dado que está desarrollado por capítulos individuales, voy a nombrar cada uno:
  • La ecuación de Planck-Einstein (escrito por Graham Farmelo), en el que hace un resumen de la historia de E=hf, incluyendo todos los años que ha estado desentrañándose su significado real. También salen a colación la masa de Planck=√(hc/G), la longitud de Planck=√(hG/c³) y el tiempo de Planck=√(hG/c⁵).
  • E=mc² (escrito por Peter Galison). Detalla también la historia de su descubrimiento y su significado. Hay una buena indicación que merece la pena comentar y es que "respetando siempre las leyes de conservación, la energía también puede convertirse en masa".
  • La ecuación de la relatividad general (escrito por Roger Penrose). Como no podía ser de otro modo, este es uno de los capítulos más técnicos y nos introduce en la historia y el significado de la famosa fórmula de la relatividad general: Rab – ½ R gab = -8𝜋GTab (que relaciona la curvatura del espacio tiempo (lado izquierdo) con la distribución de masa en el universo (lado derecho)) y, aunque parece una ecuación muy sencilla, es una ecuación tensorial (y engaña). Obviamente, nos comenta muchas más cosas, como el principio de equivalencia, las fuerzas de marea, la desviación geodésica, el tensor de curvatura de Riemann (que en el espacio-tiempo tetradimensional tiene veinte componentes), la geometría minkowskiana (que tiene la curiosa propiedad de que la distancia entre dos puntos puede ser nula aunque tales puntos no coincidan), las ondas gravitatorias, el cálculo 2-espínor ...
  • La ecuación de Schrödinger (escrito por Arthur I. Miller): Esta es una de mis ecuaciones favoritas y nuevamente, es una que engaña, porque su formulación es muy sencilla, pero la ecuación en sí no lo es tanto. Por supuesto, al narrarnos la historia, menciona también el cálculo matricial de Heisenberg y su equivalencia.
  • La ecuación de Dirac (escrito por Frank Wilczek). Esta no engaña tanto, su formulación es algo más compleja, pero encima hay que tener cuidado que es una ecuación matricial.
  • Las ecuaciones de Shannon (escrito por Igor Aleksander), que son el pilar de la moderna teoría de la información. Y son muy sencillas las dos: I=-plog₂p, C=Wlog₂(1+S/N). De estas ecuaciones se deduce un principio muy importante que es que "la información es proporcional a lo que desconocemos". Comenta también el método matemático de reducción al absurdo (para validar A, se asume el opuesto de A y se llega a una contradicción (que es la forma más habitual de demostrar que la raíz de dos es irracional)).
  • La ecuación de Yang-Mills (escrito por Christine Sutton), que es la ecuación del movimiento del campo de Yang-Mills. Es una ecuación que implica conocimientos bastante altos de física (entre otros de simetrías gauge). Menciona que Emmy Noether constató que cada magnitud que se conserva lleva aparejada una simetría, y viceversa.
  • La ecuación de Drake (escrito por Oliver Morton), que nos indica de forma "aproximada" la posibilidad de detectar vida fuera del planeta Tierra. Es un capitulo muy entretenido y en el que mencionan la "autodestrucción genética de la razón" (es decir, la reproducción ilimitada de los imbéciles, y que es la base para una película muy tonta que se llama Idiocracy y que cuando la vi me pareció una exageración y según pasa el tiempo, cada vez creo que se parece más a un documental).
  • Las ecuaciones de la vida (escrito por John Maynard Smith). Donde nos habla de la teoría del juego evolutivo y del coste-beneficio, y de la aplicación de métodos matemáticos a la biología.
  • El mapa logístico (escrito por Robert May), que es la iteración del siguiente algoritmo: Xsiguiente = a Xinicial (1- Xinicial). Y donde observamos que, dependiendo del valor de "a" podemos encontrarnos con que una ecuación sencilla nos puede llevar a resultados caóticos. En este capitulo recomienda un libro que he aprovechado para comprarme: "Caos: la creación de una ciencia" de James Gleick.
  • Las ecuaciones de Molina-Rowland (escrito por Aisling Irwin). Estas las desconocía, y son las que detallan el proceso de descomposición en la atmósfera de los CFC (el agujero de ozono). En realidad la descomposición es un proceso muy sencillo que se puede resumir en que el Cl ataca al ozono: Cl + O3 = ClO + O2 y después ClO + O = Cl + O2 (y volvemos a tener el Cl libre que vuelve a repetir el proceso, eliminando miles de moléculas de O3 (ozono).
Resumiendo, un libro muy interesante, de 356 páginas, que se lee muy bien (algunas partes con algo de atención) y que realmente merece la pena.

Como siempre, copio un trocito:
"Habría que esperar hasta finales del siglo XIX, fecha en la que el caos fue vislumbrado por primera vez por el gran matemático francés Henri Poincaré, al estudiar ciertas ecuaciones diferenciales. A finales del siglo XIX, el rey Oscar II de Suecia ofreció un premio a la primera persona que pudiera demostrar que el sistema solar en su conjunto (el Sol, los planetas, los asteroides, etc ...) era totalmente estable. Fue al intentar conseguir este premio cuando Poincaré abordó el "problema de los tres cuerpos": tres objetos que interaccionan gravitatoriamente (p.ej., el Sol, la Tierra y la Luna), tratados de forma simplificada como si fueran tres puntos. Poincaré demostró que el sistema de ecuaciones diferenciales resultante podía dar lugar a órbitas de "indescriptible complejidad" y concluyó que el problema planteado por el rey era irresoluble, al menos mediante las técnicas disponibles entonces. Tenía razón y, además, fue el primero en entrever el caos, aunque pocos se dieran cuenta en aquel momento. En cualquier caso y para su satisfacción, fue el ganador del premio".

Clasificación:
Facilidad de lectura 3-4 (hay partes un poco complicadas, pero es que habla de ecuaciones muy, muy complejas).
Opinión: 4

sábado, 18 de abril de 2020

Los tres primeros minutos del Universo




















Escrito por Steven Weinberg y publicado por Alianza Editorial en 1996 (la versión que tengo yo, que tiene un prólogo y un comentario final (de 50 páginas con bastantes fotografías) acerca del libro y la época en la que fue escrito por parte de Jose Manuel Sanchez Ron). El original es, ni más ni menos, que de 1977. Pero es un clásico que se menciona en multitud de sitios y había que leerlo para opinar.

Del autor sí que había oído hablar, no sólo por ser un premio Nobel (no los conozco a todos) si no por haber escrito unos cuantos libros de divulgación, entre otros el que estoy comentando. Alguno de esos libros ya lo tengo anotado para comprarlo en la siguiente tanda de libros … aunque tal y como están las cosas me parece que lo tendré que comprar por internet.

El libro, tal y como reconoce el autor en la página 158, trata, no de los tres primeros minutos, sino de los tres primeros minutos y cuarenta y seis segundos, pero el título no quedaba igual de bonito. Este es un libro de divulgación científica bastante más típico que los que me he leído últimamente, y tiene algún nivel de dificultad (que se puede saltar, pero lo tiene).

Nos habla del camino que se ha recorrido, sobre todo en los últimos años, en el reconocimiento de la cosmología como ciencia y como campo para el trabajo de los físicos teóricos. Comenta muchos temas que ya han aparecido en otros de los libros que he comentado, como la luminosidad aparente (proporcional a la luminosidad absoluta e inversamente proporcional al cuadrado de la distancia), del principio cosmológico (y de una consecuencia de él: la velocidad relativa de dos galaxias cualesquiera debe ser proporcional a la distancia que hay entre ellas (Hubble)). Nos da muchos detalles técnicos que nos ayudan a entender el desarrollo de la investigación científica, como que "la longitud de onda de todo rayo de luz aumenta en proporción a la separación entre galaxias típicas a medida que el Universo se expande", explica qué nos dice el teorema de Birkhoff (uno de ellos), la ley de Stefan-Boltzmann, la masa de Jeans, la métrica de Robertson-Walker, da un repaso a las partículas elementales y su producción en el Universo primitivo, ...

Pero no introduce todos esos detalles técnicos porque sí. Basándose en ellos va llegando a conclusiones como que: "aún más difícil es comprender que este Universo actual ha evolucionado desde una condición primitiva inefablemente extraña, y tiene ante sí una futura extinción en el frío eterno o el calor intolerable", que: "las temperaturas inferiores al cero absoluto no tienen ningún significado: no puede haber menos calor que ningún calor en absoluto. De igual modo, tal vez tengamos que acostumbrarnos a la idea de un cero absoluto en el tiempo: un momento en el pasado más allá del cual sea imposible rastrear ninguna cadena de causas y efectos".

La versión que me he leído yo, son 217 páginas, un glosario final, un suplemento matemático (que requiere algo de formación técnica) y un album final de 62 páginas donde Jose Manuel Sanchez Ron comenta el libro (mucho mejor que yo) y añade muchos detalles de veinte años después de la primera edición del libro, incluyendo fotografías. Habla de los grupos de simetría y escribe lo que una vez dijo Dirac: "cada vez está más claro que el grupo de simetría de la naturaleza es la cosa más profunda que podemos entender en la actualidad sobre la naturaleza". Dice una cosa muy interesante y es que "en más de un sentido, podría pensarse que Los tres primeros minutos no es sino una versión no técnica y tardía de algunos de los capítulos de Gravitation and Cosmology" (ojo, ese sí que es un libro técnico), y una frase de Weinberg muy buena que es "en última instancia, los científicos deben aparecer ante el público como implacables enemigos de todos los dogmas, incluyendo los suyos".

Resumiendo, que merece la pena leerlo entero (si no se quiere la parte de las notas matemáticas, no pasa nada) y es un clásico que en mi opinión se ha ganado el puesto con todo merecimiento. Pero el album final merece también la pena para pillar perspectiva.

Como siempre, copio un trocito:
"La teoría del Big Bang no condujo a una búsqueda del fondo de microondas a 3ºK porque a los físicos les era extraordinariamente difícil tomar en serio cualquier teoría sobre el universo primitivo. Cada una de las dificultades mencionadas antes podía haber sido superada con un poco de esfuerzo. Sin embargo, los tres primeros minutos están tan lejos de nosotros en el tiempo, las condiciones de temperatura y densidad son tan poco familiares, que nos sentimos incómodos al aplicar nuestras teorías ordinarias de la mecánica estadística y la física nuclear.
Esto ocurre a menudo en física: nuestro error no reside en tomar demasiado en serio nuestras teorías, sino en no tomarlas suficientemente en serio. Siempre resulta difícil percatarse de que estos números y ecuaciones con los que jugamos en nuestros escritorios tienen alguna relación con el mundo real. Peor aún, a menudo parece haber un acuerdo general en que ciertos fenómenos no constituyen temas adecuados para un respetable esfuerzo teórico y experimental."

Clasificación:
Facilidad de lectura: 3 (se sigue bien, pero hay partes que hay que leer con calma).
Opinión: 4 (con cuidado con los años que han pasado, aunque sigue siendo bastante actual)

sábado, 5 de marzo de 2016

El universo cuántico




















Escrito por Brian Cox y Jeff Forshaw y publicado en 2014 (el original es del 2011, pero ha tenido diferentes ediciones con añadidos) por Penguin Random House Grupo Editorial (dentro de Editorial Debate).

Sobre los autores, simplemente decir que los dos son físicos teóricos en la Universidad de Manchester y poco más, que ya comenté en este blog otro libro suyo: ¿Por qué E=mc2? y ahí di detalles de ambos. Añadir que este libro lo compré precisamente porque me gustó bastante el primero que me leí de ellos.

Como ellos mismos dicen, lo que tratan de explicar a lo largo del libro (y en mi opinión lo consiguen) es el funcionamiento de eso que los físicos llaman mecánica cuántica, o por decirlo en otras palabras, de la física de lo muy pequeño, y, como reza el subtitulo del libro: por qué todo lo que puede suceder, sucede (no confundir esto con la famosa Ley de Murphy).

La verdad es que no se andan por las ramas explicando hechos históricos previos al desarrollo de la mecánica cuántica en sí, y ya en el segundo capítulo están hablando del modelo atómico de Bohr y del famoso experimento de la doble rendija, el del patrón de interferencia de electrones que indica que los electrones se comportan como ondas y no sólo como partículas. De hecho, dan la mejor explicación que he leído nunca del experimento (y la más cuántica también). Hay que estar muy atentos en el capitulo tres, porque ahí introducen una notación con relojes que seguirán usando para explicar diversos procesos a lo largo de todo el libro, y conviene tener las ideas claras para no quedarse luego sin entender otros desarrollos; vamos, que merece la pena releer algunas partes para quedarse bien con las ideas (bastante bien explicadas).

Como siempre, en los libros que hablan de mecánica cuántica, no podían faltar las menciones a Dirac, Pauli, Heisenberg, Schrodinger, Einstein Teller, Feynman, etc .. Aparecen también algunas cosas curiosas que, al menos para mi, eran totalmente desconocidas, como la ecuación de De Broglie, lo que se entiende por acción, pero al margen de las cosas desconocidas o no, la verdad es que explican todo con mucha claridad (incluidos los diagramas de Feynman en el capitulo 10 ó el funcionamiento de los transistores en el capítulo 9).

También, como en otros libros que he comentado con anterioridad, vuelven a hacer referencia a que cualquier teoría que no sea susceptible de falsación no es una teoría científica, de hecho, tal y como indican, en palabras del biólogo Thomas Huzley: "la ciencia es sentido común organizado, donde muchas hermosas teorías han muerto a manos de un hecho desagradable". Con esto lo que nos intentan decir es que las teorías, además de explicar los fenómenos que observamos, luego tienen que aguantar los resultados de experimentos para verificarlas o refutarlas. Cualquier teoría que no pueda ser verificada experimentalmente no es demasiado científica.

Antes de copiar el trozo habitual del libro, me gustaría indicar que tiene dos finales. Uno, para los que no quieran ver ningún cálculo matemático, en la página 243, y otro, para los que quieran ver un cálculo aproximado del que realizó Chandrasekhar en 1930 sobre el equilibrio de presiones en una enana blanca, un poco más allá, en la página 275 (en mi opinión merece la pena leer este epilogo). Resumiendo, un libro que habla de un tema bastante complejo, pero explicado de una forma bastante sencilla (eso sí, que nadie se despiste con los relojes).

Como siempre, copio un trocito:
""En una fiesta conoció a Herbert Jehle, un físico europeo que estaba pasando una temporada en Princeton, y, como es habitual entre los físicos cuando han tomado unas copas, empezaron a comentar ideas que estaban investigando. Jehle recordó el oscuro articulo de Dirac, y al día siguiente lo encontraron en la biblioteca de Princeton. Feynman empezó inmediatamente a calcular utilizando el formalismo de Dirac y, a lo largo de una tarde en compañía de Jehle, descubrió que podía derivar la ecuación de Schrodinger de un principio de acción. Fue un gran avance, aunque al principio Feynman supuso que Dirac ya lo habría hecho, porque era muy fácil. Fácil, claro está, si uno es Richard Feynman. Más adelante, Feynman le preguntaría a Dirac si sabía que, con unos pocos pasos matemáticos más, su articulo de 1933 se podía utilizar de esa manera. Tiempo después, Feynman recordaría cómo Dirac, tumbado en el césped en Princeton tras haber impartido una conferencia más bien deslucida, respondió simplemente: "no, no lo sabía. Es interesante". Dirac fue uno de los físicos más importantes de todos los tiempos, pero también era un hombre de pocas palabras. Eugene Wigner, otro de los grandes, decía que Feynman es un segundo Dirac, pero humano."

Clasificación:
Facilidad de lectura: 2 (en algunos sitios hay que pararse un poco).
Opinión: 5 (me ha gustado bastante y se lee muy bien).