Mostrando entradas con la etiqueta olbers. Mostrar todas las entradas
Mostrando entradas con la etiqueta olbers. Mostrar todas las entradas

miércoles, 16 de agosto de 2023

El planeta privilegiado











Escrito por Guillermo González y por Jay W. Richards y publicado por Ediciones Palabra en el 2006.

A los autores no lo conocía de nada, pero en el libro se podía ver que uno es profesor adjunto de Astronomía y Física en la Iowa State University y otro es vicepresidente del Discovery Institute de Seattle (graduado en filosofía y teología en la Universidad de Princeton), lo cual para hablar de lo que reza el subtítulo: "Cómo nuestro lugar en el cosmos está diseñado para el descubrimiento", pues resulta más que suficiente; si bien ya podemos intuir que nos enfrentamos a un tipo de opiniones que, de antemano, pueden ser poco científicas.

Pero la verdad es que al final las opiniones han sido bastante científicas, y todo lo que comentan en el libro lo explican de una forma correcta. Otra cosa es que, puesto que hablamos del origen del Universo y de nuestra posición en él y de las condiciones para la vida tecnológica en un planeta (no sólo vida), pues nos enfrentamos con múltiples teorías que, de momento, no pueden ser ni confirmadas ni refutadas.

Tiene un aire, y va en una línea parecida, al libro de Martin Rees "Seis números nada más" que ya comenté hace un tiempo. Lo que tratan es de dar un enfoque distinto y explicar de forma científica que los ajustes en todas las condiciones para que estemos nosotros aquí, haciéndonos preguntas (principio antrópico al margen) son demasiado finos para que se hayan producido por azar. Intentan que nos demos cuenta de que el principio de Copérnico ("la Tierra no ocupa un lugar privilegiado en el Universo") no es del todo correcto ya que estamos en una situación excepcional por nuestra situación al lado de un Sol particular, en un extremo de una galaxia, en un tiempo particular. En palabras de Dembski: "nuestro universo y nuestro lugar y tiempo, aparecen especificados para hacer posible el más complejo entre los fenómenos empíricos, una civilización tecnológica". Intentan también encontrar una correlación entre la habitabilidad de un planeta y la capacidad para la mensurabilidad (y la investigación científica).

Para explicar esto, hablan, como no podía ser de otra forma, de temas habituales, como el big bang, la relatividad, la expansión del universo (Hubble), la evolución biológica, la forma en la que producen energía los distintos tipos de estrellas, pero también de algunos otros asuntos menos conocidos, como que si la Tierra no tuviese a la Luna no estaríamos aquí, el acontecimiento de Laschamp (una debilidad temporal del campo magnético de la Tierra que ocurrió, aproximadamente, hace cuarenta mil años), los sucesos K/T (como el que extermino a los dinosaurios), que se supone que ocurren cada cincuenta o cien millones de años, los diagramas de Hertzstrung/Russell, la paradoja de Olbres ("¿por qué es oscuro el cielo nocturno?"), la ecuación de Drake (tiene un apéndice dedicado a ella), la panspermia (tiene otro apéndice en exclusiva). etc, ...

Y también hay anécdotas y temas más sencillos, como una frase de Landau: "Los cosmólogos se equivocan a menudo, pero nunca dudan". Resumiendo, 387 páginas que se leen sin complicaciones técnicas, aunque algunas partes sean un poco reiterativas (en mi opinión) y con una serie de fotografías centrales muy buenas.

Como siempre, copio un trocito:

"No obstante, se puede argumentar todavía que las serie de ideas que Copérnico inició son sugerentes. Olvidemos los mitos y el embrollo sobre el "centro del Universo". El descubrimiento de otros planetas, siendo la Tierra uno de ellos, la vista de satélites orbitando mucho de esos planetas, la comprobación de que el Sol es uno de los cientos de miles de millones de estrellas de la Vía Láctea, que es una de las cientos de miles de millones de galaxias en un universo realmente amplio y antiguo, difícilmente son triviales. Algo en el cuadro global , incluso sin falsos estereotipos, nos deja con un agudo sentido de insignificancia y aislamiento. No refuta la idea de que poseemos un lugar especial en el cosmos, pero parece pesar en contra".

Clasificación:

Facilidad de lectura: 1

Opinión: 3 (está bien ver opiniones que difieren de la línea habitual).

lunes, 10 de octubre de 2022

La ecuación de Dios











Escrito por Michio Kaku y publicado por Debate en el 2022.

Del autor, poco voy a decir que no haya dicho ya, que he comentado bastantes libros suyos con anterioridad. Es un gran divulgador científico (al margen de llevar media vida trabajando en la teoría de cuerdas).

El título del libro ya nos dice de qué va a tratar: de la búsqueda de la teoría final (esa que llevamos buscando desde que Einstein lo intentara sin éxito). Una teoría que mezcle finalmente la relatividad general y la mecánica cuántica.

Para ponernos un poco en situación de entender el asunto, empieza dándonos pistas sobre lo que se entiende por simetría ("un objetos es simétrico si, después de cambiar la disposición de sus partes, sigue siendo el mismo, esto es, es invariante"). Y ¿por qué es importante la simetría? pues porque la simetría nos ha llevado a muchos descubrimientos (al margen del teorema de Noether). Una vez que tenemos la simetría en la cabeza, nos habla un poco sobre la mecánica de Newton y el posterior desarrollo de la misma por parte de Einstein, del que por cierto cita una frase que toda persona debería leer en algún momento: "no soy más que un estorbo para mis parientes. Habría sido mejor que nunca hubiese nacido". Menos mal que no fue así y hoy podemos hablar de él y de su principio de equivalencia (la aceleración en un marco de referencia es indistinguible de la gravedad en otro marco). Y cómo no, da detalles de las conferencias Solvay, sobre todo de la de 1930 en la que Einstein y Bohr tuvieron, textualmente (en palabras de John Wheeler): "fue el mayor debate del que yo tenga noticia en la historia intelectual. En treinta años, nunca supe de un debate entre dos hombres más grandes, durante tanto tiempo, sobre una cuestión tan profunda y con tan profundas consecuencias en la comprensión de este extraño mundo".

Nos habla, como no puede ser de otra manera, del procedimiento llamado "teoría de renormalización" (utilizado en la QED). Y de lo que dijo una vez Dirac al respecto: "Las matemáticas no son razonables. Unas matemáticas razonables implican despreciar una cantidad cuando es demasiado pequeña, ¡no porque es infinitamente grande y no la quieres!". También menciona la paradoja de Olbers (personalmente creo que casi todo el mundo se ha preguntado alguna vez algo parecido) y como no, la Guía del autoestopista galáctico (y es que los que leemos divulgación científica no tenemos más remedio que leer esa magnífica "trilogía de cinco libros").

Y de la QED va pasando, poco a poco, a la teoría de cuerdas, de una forma muy sencilla y de hecho indica el por qué de las diez (u once) dimensiones requeridas por la teoría para que los no iniciados en la misma (vamos, casi todo el mundo) sepamos que no es porque sí, sino que tiene un motivo matemático.

Resumiendo, un libro de 179 páginas que se lee muy bien (como todos los suyos) y con unas notas finales que merece la pena leer aunque sólo sea para ver la diferencia entre la única ecuación de la relatividad general y las ecuaciones del modelo estándar.

Como siempre, copio un trocito:

"A continuación Hawking demostró que la radiación emitida por un agujero negro era en verdad , una forma de radiación de cuerpo negro. Lo calculó al comprender que el vacío no era solo el estado de la nada, sino que en realidad bullía de actividad cuántica. En la teoría cuántica, incluso la nada se halla en un constante estado de agitada incertidumbre, donde electrones y antielectrones podrían saltar del vacío de repente, colisionar y volver a desaparecer en el vacío. Así que la nada, es de hecho, un hervidero de actividad cuántica. Luego, Hawking comprendió que, si el campo gravitatorio era lo bastante intenso, las parejas de electrón y antielectrón se podían crear del mismo vacío, generando lo que se denominan partículas virtuales". Si uno de los dos miembros cayese en el agujero negro y el otro escapase, crearía lo que ahora se denomina "radiación de Hawking". La energía para crear este par de partículas procede de la energía contenida  en el campo gravitatorio del agujero negro. La segunda partícula deja el agujero negro para siempre, con lo cual el contenido neto de materia y energía del agujero negro y su campo gravitatorio ha disminuido".

Clasificación:

Facilidad de lectura: 1

Opinión: 4