Mostrando entradas con la etiqueta agujeros negros. Mostrar todas las entradas
Mostrando entradas con la etiqueta agujeros negros. Mostrar todas las entradas

martes, 6 de agosto de 2024

Breve historia de los agujeros negros


 










Escrito por Rebecca Smethurst y publicado por Blackie Books en 2024 (el original es del 2022).

Nuevamente, a la autora no la conocía de nada, pero viendo que era astrofísica y divulgadora científica, pues por qué no intentar a ver qué había hecho. Bueno, eso y que ya me había leído algún que otro libro de esta editorial que me había gustado mucho (éste).

Como buena astrofísica, para contarnos un poco lo que son los agujeros negros, hace primero un pequeño repaso a la historia científica hasta que se llegó a comprender que esas soluciones extrañas de las ecuaciones de Einstein no eran sólo un divertimento matemático, sino que podía haber, y de hecho hay, una realidad física detrás. De hecho tiene una frase muy buena que explica un poco cómo avanza la ciencia: "una sociedad no evoluciona si se niega a modificar sus creencias cuando se le presentan pruebas abrumadoras en sentido contrario"

Una vez que nos sitúa en la actualidad (finales del siglo XX, principios del XXI), va dando detalles de cómo fueron evolucionando las creencias sobre los agujeros negros, hasta llegar a la actualidad (foto del agujero negro incluida) y explicando muy bien, muchas cosas sobre ellas, algunas desconocidas por mi y otras más habituales, pero explicando muchos conceptos que hacen que la final cambies la perspectiva sobre los agujeros negros. Comenta temas como la ecuación de ionización de Saha, el diagrama de Hertzsprung-Russell (que ya mencioné en otro comentario: éste), la ecuación de la relatividad especial de Einstein cuando los objetos se mueven (que es una de las pocas ecuaciones del libro), el radio de Schwarzschild, la relación de Magorrian (una correlación entre el tamaño de los agujeros negros supermasivos y la masa de los bulbos de su galaxia), el límite de Eddington (la velocidad de crecimiento de los agujeros negros está restringida por la presión de radiación). Hace mención también a un artículo que ella misma define como uno de los artículos de investigación más influyentes de toda la historia de la astrofísica: "Síntesis de los elementos en las estrellas". Todo muy bien explicado y de forma muy sencilla ... y con humor, incluyendo menciones a la famosa Guía del autoestopista galáctico, como no podía ser de otra forma.

Resumiendo, un libro de 235 páginas que se leen del tirón y sin ninguna dificultad matemática. Un muy buen libro de divulgación. Habrá que estar atentos a esta escritora y seguir de cerca a la editorial, que ya van varios libros que me han parecido muy buenos.

Como siempre, copio un trocito:

"Si se canalizara la suficiente cantidad de gas en dirección al centro de la Vía Láctea, hacia el agujero negro, técnicamente podría crecer a un ritmo 10 millones de veces mayor. Pero no lo hace: porque los agujeros negros no son aspiradoras infinitas. No succionan. Tiene que haber algún proceso que desplace físicamente material hacia el centro antes de que se acerque lo bastante para quedar atrapado en el disco de acreción y entre en órbita por la acción de la gravedad del agujero negro. Si lo pensamos bien, los agujeros negros no se asemejan tanto a las aspiradoras, como a los cojines de un sofá; acomodados en su sala de estar, con su modesta apariencia, sin succionar nada de nada. Pero si por casualidad acercas algo físicamente al borde de uno de esos cojines y se te cae por la parte de atrás, desaparece para siempre".

Clasificación:

Facilidad de lectura: 1

Opinión: 4-5 (muy buen libro de divulgación)

viernes, 18 de noviembre de 2022

Cuestiones cuánticas y cosmológicas











Escrito por Stephen W. Hawking y Roger Penrose y publicado por Alianza Editorial en 1993 (actualmente van por la tercera edición que tiene una portada distinta, pero he puesto la del libro que tengo yo; y el link no va a la editorial sino a una tienda, porque en la editorial no he logrado encontrar el libro).

Bueno, esta vez sí que conocía a los autores, y tengo prueba de ello, que he comentado bastantes libros suyos en el blog (y tengo algunos pendientes de leer, pero tardaré en hacerlo, que me da pena ir acabando con ellos, que los dos primeros libros de divulgación que leí eran suyos). No hace falta que diga que son dos grandes científicos y divulgadores (aunque uno, en mi opinión, sea muy técnico para el público general).

El libro no es un relato único, sino que son diez ensayos que, como muy bien dice José Manuel Sánchez Ron en su introducción: "se trata de unos trabajos con frecuencia difíciles". La introducción son unas veinte páginas que hacen un buen resumen del libro. Por cierto de Sánchez Ron, también he puesto alguna que otra entrada.

La mejor forma que tengo de explicar de qué va el libro es poner los títulos, el autor (SWH o RP) y las fechas de los ensayos, con lo que queda todo bastante claro (creo):

  1. Avances teóricos en relatividad general. SWH, 1980.
  2. Colapso gravitacional. El papel de la relatividad general. RP, 1969.
  3. La mecánica cuántica de los agujeros negros. SWH, 1977.
  4. Agujeros negros e impredictibilidad. SWH, 1978.
  5. ¿Está próximo el final de la física teórica? SWH, 1979.
  6. Singularidades y asimetría temporal. RP, 1979.
  7. La dirección del tiempo. SWH, 1987.
  8. Las condiciones de contorno del universo. SWH, 1982.
  9. Newton. Teoría cuántica y relatividad. RP, 1987.
  10. Gravedad y reducción del vector estado. RP, 1986.
He puesto el año para que la gente no se complique, que algunas de las ideas que aparecen en los artículos han ido cambiando con el tiempo. Han pasado algunos años, ejem.

En cada ensayo aportan los autores su opinión al respecto del asunto que están tratando, y la sustentan con teorías propias y multitud de datos sobre experimentos, conceptos y teorías de otros físicos. Hablan de conceptos como el efecto de Raychaudhuri, la teoría de twistores, el teorema fundamental del cálculo, singularidades pasadas (TIF), singularidades futuras (TIP), la curvatura de Weyl, que el espacio-tiempo es una variedad diferenciable Hausdorff, que hay siete posibles flechas del tiempo (pag.131), la radiación Cherenkov, soluciones de Kerr-Newman, la entropía del agujero negro de Bekenstein-Hawking (escriben la fórmula), lo que se entiende por entropía gravitacional, etc, etc, ... y aunque parezca mentira, también hay comentarios graciosos, como uno de Feynman que dice que "en la teoría newtoniana, si todas las posiciones y velocidades de un sistema complejo se conocen con cierta precisión, entonces ¡toda esa precisión se pierde en menos tiempo de lo que costaría expresarla en palabras!".

Resumiendo, un libro de 303 páginas, con una dificultad alta en algunas partes, bueno, en muchas, pero que si obviamos esa dificultad (en algunos momentos es difícil hacerlo) se puede leer siguiendo el hilo argumental. No puedo si no recomendar su lectura, a pesar de la dificultad, aunque sólo sea porque son dos de los grandes (me refiero a los autores).

Como siempre, copio un trocito (de Roger Penrose):
"El fenómeno más llamativo de todos es el de la asimetría estadística del universo. Es para mí inconcebible que esta asimetría pueda estar presente sin una causa tangible. Una explicación por medio del principio antrópico me parece completamente fuera de lugar. También me parece fuera de lugar una explicación del tipo de las de "ruptura de simetría", de acuerdo con las cuales los estados más probables del universo no tendrían por qué compartir las simetrías de las leyes que los gobiernan (¡Es difícil imaginar cómo nuestro vasto universo podría "saltar" simplemente de uno de estos estados a otro cuando incluso no sabe en qué dirección temporal debe empezar!) A mi juicio, ¡todavía queda la otra explicación (obvia() de que no todas las leyes físicas son simétricas en el tiempo!
El puzle es entonces el siguiente: ¿por qué esconde la naturaleza esta asimetría de forma tan efectiva?".

Clasificación:
Facilidad de lectura: 4-5 (hay partes sencillas, pero casi todo requiere cierto nivel o abstracción)
Opinión: 4

miércoles, 1 de diciembre de 2021

La luz en la oscuridad


 










Escrito por Heino Falcke y publicado por Penguin Random House dentro de la colección Debate en 2021 (el original es del 2020). La foto de la portada es la que se hizo famosa en su día (ésta) y el libro trata de explicar el proceso gracias al cual se pudo hacer.

Es el tercer libro de la serie de libros de divulgación que me han regalado este año y, nuevamente, al autor no lo conocía (aunque sí que había leído sobre "su foto"). Pero como el libro es un regalo, no hacía falta que me sonase el autor, aunque obviamente, para hablar de cómo consiguieron obtener la fotografía, nada mejor que el autor de la misma, que además es profesor de astrofísica en la Universidad de Radboud.

El libro se divide en cuatro partes y creo que la mejor forma de decir de qué va cada una es copiar literalmente lo que el autor pone al respecto:

  1. Primera parte. Viaje a través del espacio y el tiempo. (Una sinopsis sobre nuestro sistema solar y los comienzos de la astronomía).
  2. Segunda parte. Los secretos del universo. (Un viaje a través del universo actual y de la historia de la astronomía y de la radioastronomía modernas: la revolución de la teoría de la relatividad, el nacimiento de las estrellas y de los agujeros negros, el misterio de los cuásares, el cosmos en expansión y el descubrimiento del Big Bang.
  3. Tercera parte. El viaje a la imagen. (Mis experiencias en el camino hacia la primera imagen de un agujero negro).
  4. Cuarta parte. Más allá de los límites. (Una mirada al futuro: las grandes cuestiones abiertas de la física, la cuestión acerca del lugar del ser humano y de Dios).
Digamos que las dos primeras partes son un poco introductorias de lo que se está buscando en la tercera, y la cuarta es un vistazo a lo que debería seguir buscándose (y además la opinión del autor al respecto de lo que significa Dios en la ciencia).

Habla de lo que viene siendo habitual en este tipo de libros, pero también de otras cosas que no lo son tanto, como el "overview effect" y cómo nos transforma, de cómo la luna se aleja de nosotros cuatro centímetros al año, del disco de Nebra, del tiempo de Liapunov, de que no toda estrella de neutrones se convierte en púlsar (pero todo púlsar es una estrella de neutrones) y dice una frase muy buena: "lo que existe en las matemáticas puede existir también en la realidad, pero no tiene por qué ser así. Distinguir entre una y otra es la dura tarea de los físicos".

De cosas curiosas que ya se han comentado en otros libros, pero que no dejan de serlo, como que las partículas cósmicas producen mutaciones en los organismos (algunas buenas para la evolución y otras no tanto, como las que pueden provocar un cáncer), como lo que es un parsec ("segundo de paralaje" y corresponde a la distancia en la que una estrella mostraría un paralaje de un arcosegundo; unos 3.26 años luz), como lo que es el principio de equivalencia de Einstein (no es posible distinguir localmente la gravedad de cualquier otra aceleración), como lo que es el radio de Schwarzschild (y pone la fórmula), como lo que "es" un agujero blanco (y su posible conexión con un agujero negro en lo que viene llamándose un "agujero de gusano"), ...

Todo está relatado de forma amena y divertida, incluso con dos alusiones a "La guía del autoestopista galáctico", como son las de la página 181: "Para el viaje a la galaxia tienes que traerte todo lo necesario, excepto una toalla" (está hablando del viaje al observatorio SMT en Arizona) y las de la página 225: "nuestro principal resultado fue el tamaño del anillo; expresado en la jerga astronómica, el diámetro era de cuarenta y dos microarcosegundos. ¿Quién se habría imaginado que, después de todos esos años de trabajo y del procesamiento de billones de datos en las supercomputadoras, la respuesta a la pregunta de las preguntas iba a ser 42?". Sí lo se, estos comentarios no son muy científicos, pero no toda la cultura lo es, jeje.

Resumiendo, un libro de 286 páginas que se leen de forma muy relajada (sin lápiz ni papel). Como siempre, copio un trocito:

"Cuando el polvo y el gas entran en el campo gravitatorio de un agujero negro, se origina, igual que en el caso de las estrellas jóvenes, un disco turbulento de gas y de campos magnéticos, el denominado "disco de acreción". Y ese gigantesco remolino va a toda pastilla por el borde interior, tan sólo un poco más lento que la velocidad de la luz en torno al agujero negro. El gas se calienta por la fricción magnética e irradia una luz deslumbrante. El agujero supuestamente oscuro fulgura igual que una brillante estrella azul. Una pequeña parte del plasma caliente que afluye sale disparado al espacio por los campos magnéticos en un gigantesco chorro candente, los denominados jets.  Su aspecto se asemeja, en efecto, al chorro de propulsión de un avión. Sólo unas pocas partículas afortunadas consiguen lo que se les niega a todas las demás: son capaces de librarse del agujero negro. Igual que la corona solar, las partículas son aceleradas en los campos magnéticos y emiten la luminosa radiación sincrotrón. Es justo ese jet caliente, emisor de radiación, magnetizado y concentrado, lo que vemos de los cuásares con nuestros radiotelescopios".

Clasificación:
Facilidad de lectura: 
Opinión: 3-4

jueves, 11 de marzo de 2021

La zorra y las uvas

 

Escrito por Sean Carroll y publicado en 2020 por Ediciones de Pasado y Presente S.L. (aunque el original en inglés es del 2019). 

A Sean Carroll (no confundir con Lewis Carroll) ya lo conocía por otros libros (entre otros éste que ya he comentado). Como ya dije entonces, es profesor en el Caltech y doctor por Harvard, así que algo sabe sobre los temas de los que escribe.

Lo primero que hay que decir del libro es que, tal y como indica el subtítulo, trata de los mundos cuánticos y la realidad oculta del universo. Lo de titularlo como "la zorra y las uvas" es como homenaje a una fábula de Esopo en la que en este caso la zorra son los físicos y las uvas la comprensión de la mecánica cuántica. Lo segundo es que, tal y como indica el autor, el libro tiene tres mensajes relevantes. El primero es que la mecánica cuántica tiene que ser comprensible (aunque no lo hayamos logrado todavía). El segundo es que hemos conseguido avances reales hacia esta comprensión. Y el tercero es que todo esto es importante, y no solo para la integridad de la ciencia. 

El enigma que yace en el corazón de la mecánica cuántica se puede resumir en un lema bien sencillo: lo que vemos cuando observamos el mundo parece ser esencialmente diferente de lo que es (y ésto son palabras del autor, no mías). Y sobre esto trata el libro, sobre los avances que hemos hecho en nuestro intento de explicar los fundamentos de la mecánica cuántica (no solo el famoso "calla y calcula").

Por supuesto empieza presentándonos a la ecuación de Schrödinger (no puedo evitarlo, la pongo aquí): 

Resultado de imagen de ecuacion de schrodinger

Y las diferentes interpretaciones que de ella han hecho los físicos, entre otras y fundamentalmente la de los muchos mundos de Everett, de la que el autor se manifiesta públicamente defensor (y argumenta los motivos). Como ya ocurrió en el anterior libro que leí de él, a medida que vamos avanzando en el libro, la complejidad se va acumulando (aunque no hay prácticamente ninguna fórmula) y nos habla de modelos de colapso dinámico (como la teoría GRW), de los enfoques epistémicos y ontológicos de la mecánica cuántica, del bayesianismo cuántico, del qbismo, del teorema de Reeh-Schlieder (que viene a decir que al hurgar en un campo cuántico  es posible cambiar el estado cuántico de todo el universo a otro estado), del enigma de la información en un agujero negro (sobre esto comenté algunos libros con anterioridad, entre otros: éste), de la radiación Hawking, de los diagramas de Feynman, de la gravedad entrópica o gravedad termodinámica, etc ...

Vamos, que hay conceptos muy complejos (aunque bien explicados). Otra cosa es que los tengamos todos claros en la cabeza mientras leemos, pero eso no es culpa del autor, si ocurre será culpa nuestra. No obstante, al estar bien escrito, va intercalando cosas que hacen la lectura amena, como cuando cuenta la anécdota de que el hijo de Everett (recordemos que Hugh Everett murió de un infarto a los 51 años) dice que al principio estaba enfadado con su padre por no haberse cuidado más, pero que luego cambió de opinión: "me he dado cuenta de que el estilo de vida de mi padre tiene cierto valor. Comía, bebía y fumaba todo lo que quería, hasta que un día, de golpe, murió rápidamente. Teniendo en cuenta algunas de las otras opciones que he presenciado, tal vez disfrutar y luego morir con rapidez no sea una mala forma de irse". Y también hace un alegato a favor de que otros intenten desarrollar ideas con las que no estamos de acuerdo porque "esto nos brinda la oportunidad de mantener con vida diversas ideas, maximizando así la probabilidad de que lleguemos a la solución correcta".

Por resumir, un libro de 300 páginas que hay que leer con tranquilidad para ir absorbiendo los conceptos sin atragantarnos, pero que merece la pena leer. Esta vez voy a copiar dos trocitos, porque no me decidía sobre ninguno de ellos:

"Los agujeros negros tienen una propiedad muy especial: representan los estados de mayor entropía que podemos tener en una región cualquiera del espacio. Este resultado, sin duda provocador, fue advertido por primera vez por Bekenstein y luego perfeccionado por Raphael Busso. Si consideras una región en el estado de vacío e intentas aumentar su entropía, también debes incrementar su energía (como partimos del vacío, la energía no tiene más remedio que aumentar). A medida que vas añadiendo entropía, la energía también aumenta. Al final tendrás tanta energía en una región limitada que ésta no tendrá más remedio que colapsar para formar un agujero negro. Y aquí nos topamos con el límite; no puedes meter más entropía en una región que la que tendrías si esa región fuera un agujero negro."

"Hay que ser conservador en el sentido de que deberíamos partir de teorías y principios que ya están bien establecidos y tienen éxito, en lugar de introducir de forma arbitraria nuevos enfoques cada vez que se descubren nuevos fenómenos. Pero, a la vez, hay que ser radical, en el sentido de que hay que tomar en serio las predicciones e implicaciones de nuestras teorías en regímenes que están alejados de aquellos en los que se han comprobado".

Clasificación:

Facilidad de lectura: 3

Opinión: 4 (muy bueno, pero para leer con tranquilidad y sin ruido)

viernes, 4 de septiembre de 2020

Agujeros negros

 














Escrito por Stephen Hawking y publicado por Editorial Crítica en 2017 (aunque el original es del 2016).

En realidad el libro son dos conferencias de 15 minutos que dio en las conferencias Reith de la BBC en 2016, y ambas están cada una en un capítulo (el libro son dos capítulos). Una se titula: "¿Son calvos los agujeros negros?", y la otra: "Los agujeros negros no son tan negros como los pintan". Ambas están comentadas por David Shukman, que va metiendo notas en las partes que considera un poco más complejas.

Del autor hay poco que se pueda decir y que no haya dicho ya en los libros que he comentado de él, y en los que seguiré comentando (que aún tengo unos cuantos). Es uno de los grandes físicos teóricos de todos los tiempos y un gran divulgador científico (y junto a Roger Penrose, nos ha dado muchas alegrías y muchos quebraderos de cabeza a los aficionados para lograr entenderlos).

Como no podía ser de otra forma, en la primera conferencia nos comenta lo que sabemos (o suponemos que sabemos) sobre los agujeros negros, ¿qué son? y ¿cómo se forman?. Para explicar esto, habla de Chandrasekhar y de Landau, de lo que creemos que son los cuásares, que son los objetos más brillantes del universo y que son una abreviatura de "fuentes de radio cuasi-estelares", y se cree que son discos de materia que giran alrededor de agujeros negros.

Cuando habla de los efectos de traspasar el horizonte de sucesos de un agujero negro, amplían una frase de una película que me gustó mucho cuando era un niño (Alien, el octavo pasajero) y dicen: "en el espacio nadie te puede oír gritar; y, en un agujero negro, nadie puede verte desaparecer", y luego explican lo que han querido decir con ello.

Por supuesto, en la segunda conferencia es cuando habla de la radiación Hawking y del problema de la conservación de la información dentro de los agujeros negros (habla de que la información podría almacenarse en el horizonte de sucesos, basándose en que la información se transforma en un holograma bidimensional, por un proceso conocido como supertraslación, y, en el libro, en la parte final, ponen el sumario del artículo técnico en el que se hace esa referencia: "Pelo suave en los agujeros negros"). De ahí que en el título del capítulo digan que los agujeros negros no son tan negros.

Resumiendo, un libro de sólo 95 páginas que se leen de forma muy rápida en una tarde (y no exagero). Al final del libro ponen también una serie de comentarios/resúmenes de otros nueve libros de Hawking (de los cuales yo tengo tres pendientes de leerme).

Como siempre. copio un trocito:

"Para mi sorpresa, descubrí que el agujero negro parecía emitir partículas de forma continua. Como todo el mundo en aquella época, yo aceptaba el dictamen de que un agujero negro no podía emitir nada. Así que hice un gran esfuerzo para intentar deshacerme de ese efecto embarazoso. Pero, cuanto más pensaba en ello, más se resistía a desaparecer. Lo que al final me convenció de que aquello era un proceso físico real fue que las longitudes de onda de las partículas emitidas eran exactamente térmicas. Mis cálculos predecían que un agujero negro crea y emite partículas y radiación exactamente como si fuera un cuerpo caliente ordinario, con una temperatura que es proporcional a la gravedad en su superficie e inversamente proporcional a su masa."

Clasificación:

Facilidad de lectura: 1

Opinión: 3-4

viernes, 28 de julio de 2017

La teoría perfecta




















Escrito por Pedro G. Ferreira y publicado por Anagrama dentro de la colección Argumentos en 2015 (el original es del 2014 obviamente anterior a la detección de las ondas gravitacionales).

Del autor, nuevamente, no había oído hablar, pero con ver que es profesor de astrofísica en Oxford y que pasó por la Universidad de Berkeley y por el CERN, no hacía falta nada más para leer el libro.

El libro es un recorrido completo por la Teoría de la Relatividad General de Einstein, desde poco antes de salir a la luz hasta el 2014, donde se la estaba (aún hoy se sigue haciendo) poniendo a prueba. Y alguien se puede preguntar por qué poner a prueba una teoría que ha demostrado funcionar perfectamente en multitud de ocasiones y darnos explicaciones a fenómenos que antes no entendíamos; pues porque poniendo a prueba las teorías se aprende más sobre ellas y sobre sus posibles fallos. De igual manera que Einstein puso a prueba la teoría de la gravedad de Newton y la mejoró.

Tengo que decir que no aparece ni una sóla fórmula en todo el libro, ni siquiera las ecuaciones de campo de Einstein que son la trama central del libro. Pero el que las quiera ver sólo tiene que echar un vistazo al comentario de otro libro que hice: éste. Sí que hace un buen resumen de lo que ocurre cuando se miran en detalle las ecuaciones de campo: "se trataba, en la práctica, de un conjunto compuesto por diez ecuaciones de diez funciones geométricas del espacio y el tiempo, cada una de ellas entrelazadas de manera no lineal y tan interrelacionadas que, en términos generales, resultaba imposible resolver de manera aislada una única función". Vamos, que aunque puedan parecer sencillas, no lo son en absoluto.

Obviamente, como el libro desarrolla la historia de la relatividad, aparecen todos, y digo todos con casi total seguridad, los físicos famosos del siglo XX, ya que son piezas fundamentales del desarrollo de la historia, donde cada uno de ellos ha ido aportando su granito de arena (bueno, algunos incluso un cubo lleno). Por nombrar sólo algunos: Eddington y su experimento para verificar la curvatura de la luz en presencia de la masa solar, y su teoría de que la conversión de nitrógeno en helio podía ser la fuente de energía de las estrellas, Lemaitre y su átomo primigenio (del cual ya hablé en el comentario de otro libro: éste), todos los participantes en el proyecto Manhattan, Schwarzschild (y el origen de la noción de agujero negro), Kip Thorne (y la conservación de la información en los agujeros negros), Roger Penrose (y sus diagramas y diversos teoremas sobre singularidades (hace mención de un artículo titulado: "implosion gravitatoria y singularidades espacio-temporales", que tendré que buscar para echarle un vistazo)), Paul Dirac (y su ecuación), Hawking (y "su" radiación), en fin, de casi todos de los que han ido saliendo en los comentarios de libros que he realizado, al margen de grandes matemáticos.

Y hacia la parte final empieza a entrar en detalles de algunas de las teorías que están poniendo en duda el ajuste de la teoría a la realidad cada vez más extraña que estamos encontrando. Habla de la materia y la energía oscuras, de la teoría de cuerdas, de la teoría holográfica, de Rovelli y Smolin (con las redes de espín de Penrose) y la teoría cuántica de bucles, de Milgrom y las MOND, y algunas otras teorías con mayor o menor aceptación que intentan dar una mejor explicación del universo y aunar la gravedad y la mecánica cuántica. Y también habla de los experimentos que se estaban y se están llevando a cabo para la detección de las ondas gravitacionales (por eso comenté al principio que el libro se había escrito antes de que fuesen confirmadas).

En fin, un libro que parte de la incredulidad inicial de los físicos establecidos con la teoría de Einstein y todo lo que conllevaba con sí (big bang, universo en expansión, agujeros negros, tiempo relativo, ...), narra los momentos de aceptación y auge de la misma (con sus portadas en revistas internacionales) y detalla el momento actual en el que vuelven a surgir dudas sobre su corrección. Son 381 páginas que se leen muy bien y sin ninguna dificultad.

Como siempre, copio un trozo:
"Lo que voy a decir a continuación parece la más superlativa de las exageraciones, pero es una tentación a la que no puedo resistirme: la recompensa que se obtiene al dominar la teoría general de la relatividad de Albert Einstein equivale nada menos que a hacerse con la clave que permite comprender la historia del universo, el origen del tiempo y la evolución de todas las estrellas y galaxias del cosmos. La relatividad general puede decirnos lo que hay en los más remotos confines del universo y explicar cómo afecta ese conocimiento a nuestra existencia inmediata, la de aquí y ahora. Además, la teoría de Einstein arroja luz sobre lo que sucede a la más diminuta escala de la existencia, allí donde las partículas dotadas de la más elevada energía alcanzan a surgir de la nada. Puede explicar tanto el surgimiento del tejido íntimo de la realidad, el espacio y el tiempo como la forma en que esa estructura acaba convirtiéndose en la espina dorsal de la naturaleza".

Clasificación:
Facilidad de lectura: 1
Opinión: 4