Mostrando entradas con la etiqueta Kolmogorov. Mostrar todas las entradas
Mostrando entradas con la etiqueta Kolmogorov. Mostrar todas las entradas

lunes, 13 de febrero de 2023

π-fias matemáticas


 










Escrito por Matt Parker y publicado por Editorial Crítica dentro de su colección Drakontos en 2020 (el original es del 2019).

Bueno, al autor no lo conocía, pero viendo el tema y que es es matemático, que se dedica a la divulgación y que el libro ha sido un best seller en Gran Bretaña, decidí que no pasaba nada por echarle un vistazo, y así lo he hecho.

Tal y como el título indica, el libro nos va a detallar unos cuantos errores matemáticos (cometidos no sólo por matemáticos, sino por ingenieros, arquitectos, informáticos, físicos, etc ..., usando las matemáticas), algunos conocidos y otros no tanto, pero siempre curiosos. En algunas partes me recuerda un poco a otro libro que comenté con anterioridad: éste.

La esencia del libro, y en mi opinión, lo que hay que tener siempre en cuenta es algo que se resume muy bien en un dicho conocido: "el que tiene boca se equivoca" y que el autor resume como: "mientras la teoría vaya por detrás de las aplicaciones prácticas, siempre habrá sorpresas matemáticas esperándonos. Lo importante es que aprendamos de estos errores inevitables y no los repitamos".

Habla de los errores que se comenten al usar hojas de cálculo (y dice una cosa que creo que siempre hay que tener en cuenta: "los cálculos son tan fiables como las fórmulas que hay bajo su superficie"), de los errores que cometemos contando (y pone el ejemplo del "problema del poste", que puede parecer una tontería, pero tonterías como ésta son muy habituales y peligrosas cuando se realizan cálculos), de lo cuidadosos que tenemos que ser al tratar con sucesos no independientes (y de los errores que se han cometido cuando no se han tenido en cuenta las independencias o no de distintos sucesos), del cuidado que hay que tener cuando calculamos probabilidades (textualmente: "la probabilidad es un área de las matemáticas en la que la intuición, además de fallarnos, por regla general se equivoca"), de los números aleatorios y pseudoaleatorios (y la definición de Kolmogorov: "una secuencia aleatoria es cualquier secuencia que es igual o más corta que cualquier descripción de ella"), ... En fin, de muchos errores, incluyendo errores de programación de distintos dispositivos, y de algunos conceptos curiosos, como la característica de Euler de una superficie, el "modelo de queso suizo" para analizar desastres, de James Reason (que me ha gustado mucho) y casi termina el libro comentando que "los matemáticos no son personas a quienes les resultan fáciles las matemáticas; son personas que disfrutan con su dificultad".

Resumiendo, un libro de 332 páginas (creo, que la verdad es que el autor ha puesto complicada la numeración de las mismas, jejeje) que se leen de forma muy fácil y muy amena, excepto la numeración de las mismas (se nota que practica el humor). Muy recomendable para pasar un buen rato.

Como siempre, copio un trocito:

"Una gran parte de las matemáticas tiene que ver con hallar una respuesta, pero, en estadística, los números que surgen de los cálculos nunca cuentan la historia completa. Todos los datos de los Doce del Datasaurio tienen los mismos valores de correlación, pero en los gráficos se ve claramente que las relaciones son diferentes. Los números que se obtienen gracias a la estadística son el inicio del proceso de descubrimiento de la respuesta, no el final. Hace falta un poco de sentido común y de análisis inteligente para llegar a la respuesta correcta a partir de las estadísticas.

Si no, cuando escuche una estadística como la que muestra que la tasa de casos de cáncer ha estado aumentando constantemente, le pueden hacer suponer que las personas tienen actualmente vidas menos saludables. Lo opuesto es cierto: la longevidad está aumentando, lo que significa que cada vez hay más personas que viven lo suficiente para contraer un cáncer. Para la mayoría de los cánceres, la edad es un factor de riesgo y, en el Reino Unido, el 60% de todos los casos de cáncer diagnosticados han sido en personas de 65 años o más. Lo que me hace afirmar, aunque me duela, que, en cuanto a las estadísticas, los números no lo son todo."

Clasificación:

Facilidad de lectura: 1 (y divertido).

Opinión: 4-5 (muy entretenido de leer aunque no entra en complicaciones técnicas).

jueves, 9 de julio de 2020

La información




















Escrito por James Gleick y publicado por Editorial Crítica en 2012 (el original es del 2012).

Al autor esta vez sí que lo conocía, aunque desde hacía poco, ya que aparece recomendado un libro suyo: "Caos: la creación de una ciencia", en una entrada reciente del blog: ésta. El libro que recomendaban también lo tengo, pero aún está pendiente de leer, que me compré dos al tiempo y éste me llamaba más la atención.

Obviamente, está muy bien escrito y bastante bien hilado. No entra demasiado en detalles técnicos, pero tampoco los esquiva, como podría pensarse de alguien, en principio, no demasiado versado en cuestiones científicas de cierta dificultad (o aparentemente no versado por los estudios que tiene, pero nunca se sabe).

Tal y como indica el título del libro, nos narra la historia y la evolución del concepto de información a lo largo del tiempo, desde los tambores de ciertas tribus en África, hasta las teorías más actuales a la vista de lo que está ocurriendo con la "información" en internet.

Por supuesto, en un libro que hable de información desde un punto de vista científico, la teoría de la información de Claude Shannon juega un papel central ("la teoría de Shannon tendió un puente entre información e incerteza: entre información y entropía; entre información y caos"). Comenta también lo que se entiende por límite de Shannon. Detalla un comentario de John Robinson Pierce (el ingeniero de Bell Labs que se había inventado el término "transistor"): "cuesta imaginar el mundo antes de Shannon como lo veían los que vivían en él. Resulta difícil recuperar la inocencia. la ignorancia y el desconocimiento". Da multitud de definiciones de lo que se entendía por información: "la información es incertidumbre, sorpresa, dificultad y entropía". Por cierto, que de entriopía se habla bastante y hay una frase muy buena: "La entropía se convierte así en un equivalente físico de la probabilidad: la entropía de un macroestado determinado es el logaritmo del número de sus microestados posibles".

Pero habla de muchas otras curiosidades por el camino, como la "máquina analítica" de Charles Babagge (y su coincidencia con Ada Byron, condesa de Lovelace), el cumplido que le hizo Bertrand Rusell a George Boole: "La matemática pura fue descubierta por Boole en una obra que tituló las Leyes del pensamiento)". Un comentario de Thomas C. Fry: "El matemático tiende además a idealizar cualquier situación a la que se enfrenta. Sus gases son "ideales", sus conductores "perfectos", sus superficies "lisas". A eso le llama "ceñirse a lo esencial". Es probable que el ingeniero diga que es "ignorar los hechos"".

Comenta la demostración de Gödel de que un sistema formal coherente tenía que ser incompleto (y llega hasta indicar que un número no computable es, efectivamente, una proposición indecidible (Turing)). Menciona, hablando de Kolmogórov, su libro "Fundamentos de la teoría de la probabilidad" (un clásico de las matemáticas modernas), así como su definición de complejidad: "la complejidad de un objeto es el tamaño del programa de computadora más pequeño que se necesita para generarlo". También, como curiosidades, menciona muchos tipos de números (la mayoría desconocidos por mi), como los números de Leyland, los de Carmichael, los de Zeisel, ...

Y también habla de la información desde un punto de vista biológico y, como no podía ser de otra forma, menciona el libro de Schrödinger: "¿qué es la vida?" (que por cierto a ver si me lo devuelven y lo comento en el blog), y de muchos otros biólogos y químicos, como Watson y Crick. Y de otro tipo de evolución iniciada por Dawkins y sus "memes" (o replicadores incorpóreos). Hablando de memes, pone un comentario de H.L.Mencken: "Morir por una idea es indudablemente algo muy noble, ¿pero cuán más noble sería que los hombres murieran por ideas que fueran verdad".

Por resumir, un libro de 434 páginas, que se leen de forma muy tranquila, pero que dan, valga la redundancia, mucha información, por lo que merece la pena leerlo con calma.

Esta vez, para variar, voy a copiar dos trocitos que no tienen nada que ver entre ellos, pero hay uno que me ha gustado especialmente:

"Por fin Carrington aprendió a tocar el tam-tam. Tocaba principalmente en kele, una lengua de la familia del bantú hablada en el oeste de lo que actualmente es el Zaire. "En realidad no es un europeo, a pesar del color de su piel", dijo hablando de Carrington un habitante del poblado de Lokele. "Era uno de nuestro poblado, era uno de nosotros. Cuando murió, los espíritus se equivocaron y lo enviaron lejos de aquí, a un poblado de blancos, para que entrara en el cuerpo de un niño que había nacido de una mujer blanca, en vez de nacer de una de nuestras mujeres. Pero como nos pertenecía a nosotros, no podía olvidar de dónde era y volvió". Y el nativo añadía generosamente: "si va un poquillo atrasado con los tambores es debido a la poca educación que le dieron los blancos".

"Como decía Chaitín. "Dios no solo juega a los dados en la mecánica cuántica y en la dinámica no lineal, sino incluso en la teoría elemental de los números".
He aquí algunas de sus enseñanzas:
  • La mayoría de los números son aleatorios. Sin embargo, son muy pocos los que puede demostrarse que son aleatorios.
  • Un flujo caótico de información puede ocultar, sin embargo, un algoritmo sencillo. Trabajar en sentido inverso yendo del caos al algoritmo puede ser imposible.
  • La complejidad de Kolmogórov-Chaitin es a las matemáticas, lo que la entropía a la termodinámica: el antídoto contra la perfección. Del mismo modo no podemos tener máquinas de movimiento perpetuo, no puede haber sistemas axiomáticos formales completos.
  • Algunas realidades matemáticas son verdaderas sin motivo alguno. Son accidentales, carecen de causa o de significado profundo."

Clasificación:
Facilidad de lectura: 1-2
Opinión: 4-4.5.

viernes, 8 de junio de 2018

La entropía desvelada




















Escrito por Ariel Ben-Naim y publicado por Editores TusQuets dentro de la colección Metatemas, dirigida por Jorge Wagensberg (del que comenté un libro: éste). La primera edición es del 2011, pero la que yo he leído es una segunda revisada del 2017.

Como ya viene siendo costumbre, vuelvo a reconocer que no conocía al autor, pero viendo que es doctor en química física por la Universidad Hebrea de Jerusalem donde enseña termodinámica y mecánica estadística desde 1974, no hace falta mucho más para darle una oportunidad (a ver si no quién va a tener más claro el concepto de entropía que alguien que enseña termodinámica y mecánica estadística).

Con el título del libro no creo que haga falta decir que de lo que habla es de la segunda ley de la termodinámica y de la entropía, y que intenta quitarle todo ese aura de misticismo y misterio que la rodea y explicarla de la forma lo más sencilla posible. Como el mismo dice al principio del libro: "He escrito este libro pensando en lectores que no saben nada de ciencia ni matemáticas. El único prerrequisito para leer este libro es el mero sentido común, y la voluntad de aplicarlo. Una advertencia antes de seguir leyendo: "sentido común" no significa fácil o elemental." Y la advertencia está bien hecha, porque hay alguna parte del libro un poco complicada, pero de media se puede decir que no se necesita nada más que un poco de sentido común y prestar atención a los juegos de dados con los que nos va introduciendo en la segunda ley de la termodinámica y la entropía. Para eso primero nos comenta un poco lo que se entiende en matemáticas por probabilidad (que hay mucha gente que con esto se lía un poco y la probabilidad a ojo suele ser muy engañosa) y el enfoque axiomático de Kolmogorov (y los tres conceptos básicos en los que se sustenta: el espacio muestral, la colección de sucesos y la probabilidad de cada suceso). Usando juegos de dados (y las configuraciones específicas e inespecíficas) como línea argumental, nos lleva hasta la teoría de la información de Shannon (sobre el tema de la entropía y la información ya comenté algo en otros libros: éste y éste), aparece la famosa ecuación de Shannon e introduce el concepto de "cantidad de información perdida" (CIP). También deja muy claro lo que en probabilidad se entiende por "siempre" y "nunca".

Por el camino, para que las cosas se vayan entendiendo, todo está basado en ejemplos con dados, gases y moléculas y está explicado de forma que no terminemos como decía Atkins: "... y una infinitamente incomprensible entropía" o como decía Morowitz: "el empleo de la termodinámica en biología tiene una larga historia de confusión". Explica muy bien el concepto de entropía (incluso por qué se llama así), y termina indicando que la entropía no debería venir expresada en las unidades en las que está expresada (que es una reminiscencia de la era preatomista de la termodinámica) y que, como dijo G.N. Lewis (1930): "una ganancia de entropía siempre significa una pérdida de información, y nada más". Ojo, que ésta no es la definición que hace el autor de la entropía (pero es una aproximación a la idea bastante simple y clara)

En fin, que son 245 páginas en las que cumple de sobra con las cuatro promesas que hace en la página 27 (a lo mejor esas cuatro promesas son un guiño a las famosas cuatro leyes de la termodinámica) de las cuales las dos primeras son: "A los lectores que tengan alguna noción de la entropía y les haya parecido misteriosa, les prometo desmitificarla. A los que nunca hayan oído hablar de la entropía, les prometo inmunidad ante cualquier mistificación futura del concepto".

Como siempre copio un trocito:
"Ahora bien, ¿está la segunda ley realmente asociada a esta flecha del tiempo?
La respuesta clásica esta pregunta es que si vemos una película al revés, enseguida nos daremos cuenta de que la acción está yendo hacia atrás, aunque no nos lo digan. Por ejemplo, si vemos que un huevo reventado en el suelo de pronto se recompone espontáneamente, y salta para aterrizar intacto sobre la mesa, sonreiremos e invariablemente reconoceremos que la película está discurriendo al revés. ¿Por qué? Porque sabemos que un proceso de esta clase no puede retroceder en el tiempo.
Pero ¿y si un día nos sentamos en la cocina, vemos un huevo reventado en el suelo, y de pronto el huevo revierte a su estado entero y luego salta hasta lograr situarse encima de la mesa?
Por fantástico que pueda parecer, nuestra asociación del proceso de rotura del huevo con la flecha del tiempo es tan fuerte que no creeríamos lo que viesen nuestros ojos, y probablemente miraríamos a nuestro alrededor para ver si alguien nos está engañando con algún truco. O, si entendemos la segunda ley, podríamos convencernos de que hemos tenido la inmensa fortuna de observar un proceso real, en el sentido del tiempo correcto, que es extremadamente raro pero no imposible".

Clasificación:
Facilidad de lectura: 1-2
Opinión: 4 (cumple totalmente con las promesas iniciales)