Páginas

lunes, 8 de septiembre de 2014

¿Y si Einstein estuviera equivocado?


















Escrito por Jim Al-Khalili, Brian Clegg, Frank Close, Rhodri Evans, Simon Flynn, Sophie Hebden y Angela Saini, y publicado por Ediciones Akal en el 2014 (el original es del 2013).

Los autores son una mezcla interesante entre catedráticos de física en Oxford, Surrey, profesores universitarios y divulgadores científicos, lo que hizo que me decidiera a leerlo, aunque nuevamente, como me pasó con la entrada anterior, no era lo que me esperaba. Ni para bien ni para mal, simplemente creí que se trataba de otra cosa, pero bueno, siendo lo que es, no está mal. Y con "siendo lo que es", me refiero a que podríamos tomarlo como una minienciclopedia de física, y no como los ensayos que me esperaba.

El libro está dividido en siete secciones: La física cuántica, La relatividad y los viajes en el tiempo, La física de partículas, La cosmología, La astrofísica, La física clásica y La tecnología. En cada una de las secciones plantea varias preguntas, por ejemplo: ¿y si hubiera una temperatura por debajo del cero absoluto? Y esa pregunta la responde en una página, con el mismo formato de respuesta para cada una de las preguntas (por eso decía lo de una especie de enciclopedia).

Como tal, el libro es curioso y sirve para fijar conceptos de una forma rápida y sencilla, pero que nadie se equivoque, no es un libro de lectura como tal, sino casi un libro para tener a mano por si se nos despista algún concepto leyendo algún otro libro.

Pues lo dicho 152 páginas (de las cuales la mitad son gráficos que acompañan la explicación que nos da en la página anterior, de forma que al abrir cada pregunta tenemos la parte escrita a la izquierda y los dibujos a la derecha) que se pueden leer de forma salteada perfectamente ya que son entradas individuales.

Como siempre, copio un trocito:
"La teoría cuántica nos habla de la naturaleza de la materia y la luz, pero a la que corresponde poner orden en el zoo de diminutas partículas de las que está formado nuestro universo es a la física de partículas con nuestra mejor teoría actual, llamada "modelo estándar". Experimentos recientes en el LHC han confirmado, al menos parcialmente, la posible existencia de la parte más misteriosa de este modelo, el bosón de Higgs, pero la física de partículas sigue hallándose en la primerísima fase del conocimiento científico, con una parte tan grande de especulación como de certezas, algo que también se puede decir de la parte de mayor alcance de la física, la cosmología."

Clasificación:
Facilidad de lectura: 1-2
Opnión: 3 (pero no es un libro de ensayo).

lunes, 1 de septiembre de 2014

El cerebro de los matemáticos

El cerebro de los matemáticos

Escrito por David Ruelle y publicado por Antoni Bosch editor SA en 2012 (aunque el original es del 2007 publicado por Princenton University Press).

El autor es catedrático emérito de física matemática en el IHES de París, lo cual para mi era un motivo más que suficiente para echarle un vistazo al libro, a ver si alguien lograba por fin decirme cómo pensamos las matemáticos.

Tengo que indicar que el libro no era lo que pensaba que iba a ser. En un principio pensé que se iba a dedicar un poco más a coger a los grandes pensadores matemáticos de la historia y contarnos cómo llegaban a las conclusiones que llegaban (ya se sabe que cada uno se inspira donde quiere, y algunos grandes científicos se inspiraban en sitios bastante curiosos). Pero no, o bueno, sí, pero en la parte final. En los primeros capítulos habla, más que de los matemáticos, de la matemática en si. Qué es y cuáles son sus componentes fundamentales, los axiomas en los que se apoya el resto de la construcción matemática. No utiliza casi fórmulas, y las que usa no son muy complicadas de seguir, vamos, que no hay que hacer integrales, sólo algunas divisiones (y las fórmulas un poco más complejas, simplemente echarles un vistazo pero no volverse loco). Si es verdad que menciona a prácticamente todos los matemáticos desde la antigüedad hasta nuestros días (incluyendo a Nicolas Bourbaki), pero no tanto la forma de pensar sino un poco sus relaciones sociales y el entorno en el que vivieron (que, obviamente también influye en la forma de pensar).

La segunda parte del libro ya era algo más lo que me esperaba. Nos comenta la forma en que algunos matemáticos y físicos intentan elaborar teorías y sus costumbres y manías para llegar a obtener los resultados que obtienen. No hay que olvidar que las matemáticas son, aprox, un cinco por ciento inspiración y un noventa y cinco por ciento transpiración (según de quien copiemos la frase, los porcentajes varían), pero ese cinco por ciento es lo realmente importante, y, aunque no todos pensamos de la misma forma, si es verdad que muchos científicos lo que hacen es trabajar muy duro en un asunto y luego dejarlo reposar una temporada, a la espera de que llegue la inspiración (de ahí que muchos digan que resolvieron el problema durmiendo). Sobre esto hay una cita de Julia Robinson muy buena en una entrada anterior.

En fin, que me esperaba un poco más, pero son 169 páginas (más unas notas finales de aspectos un poco más técnicos) que no están mal del todo y en las que se aprenden muchas cosas que, al menos yo, no sabía de las vidas de algunos de los personajes de los que he estudiado algunos teoremas).

Como siempre, copio un trocito:
"Después de un montón de consideraciones preliminares por fin hemos llegado al problema cardinal de las matemáticas creativas: ¿cómo se construye una teoría interesante? En la práctica, la pregunta es más bien: ¿cómo se escribe un artículo de veinte páginas que salga publicado en Annals of Mathematics y garantice una plaza permanente en una buena universidad? (El Annals es una buena revista, bastante exigente a la hora de aceptar artículos, y en general publica cosas interesantes). El número de artículos interesantes de veinte páginas que cabe concebir es enorme y el número de artículos de veinte páginas sin el menor interés, erróneos o absurdos, más enorme todavía."

Clasificación:
Facilidad de lectura: 1-2
Opinión: 3